
GEE—图表专项
文章平均质量分 80
此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE图表:基于Sentinel-2影像进行归一化植被指数(NDVI)的计算与分区可视化
首先,我们需要定义一个感兴趣区域(AOI),这将是我们分析的基础。// 将地图中心移动到AOI,并设置缩放级别为8通过以上步骤,我们成功地定义了感兴趣区域,加载了Sentinel-2影像数据,计算了NDVI,进行了分区分析,并生成了NDVI的时间序列图。同时,我们还创建了图例面板,以便更好地理解分析结果。这些分析为我们提供了深入了解植被状况的重要工具,希望这篇博客能帮助您更好地利用Google Earth Engine进行环境监测与分析!原创 2025-05-05 11:00:00 · 447 阅读 · 0 评论 -
GEE可视化:使用 Google Earth Engine (GEE) 来计算特定区域的归一化植被指数 (NDVI)并可视化
首先,我们需要定义一个多边形作为我们的感兴趣区域 (AOI),在这里我们使用了墨西哥城的一个矩形区域。var aoi =原创 2025-05-05 08:00:00 · 273 阅读 · 0 评论 -
GEE图表:基于Google Earth Engine的2014-2024年墨西哥城(CDMX)植被指数与地表温度分析
此外,还可以结合实地观测数据,对模型结果进行验证和改进。从影像中可以看出,城市中心区域的NDVI值相对较低,而周边山区和绿地的NDVI值较高,这表明城市化对植被覆盖产生了显著影响。线性回归分析结果表明,LST与年份之间存在显著的正相关关系,斜率为正值,表明随着时间的推移,地表温度逐渐升高。其次,进行了云层掩膜处理,通过分析影像的质量评估(QA)波段,去除云层和云影干扰,确保数据的准确性。通过绘制时间序列图表,分析了LST随时间的变化趋势,并进行了线性回归分析,拟合了LST随年份变化的线性趋势线。原创 2025-04-30 08:00:00 · 910 阅读 · 0 评论 -
GEE图表:计算和可视化温度综合指数(TCI,Temperature Condition Index)在特定区域的变化和时序图表
首先,我们需要定义一个研究区域。我们使用一个多边形来表示该区域。})]);原创 2025-04-29 08:00:00 · 826 阅读 · 0 评论 -
GEE图表:使用Google Earth Engine (GEE)处理TRMM 3B42降水数据,计算并导出2014年的月度平均降水数据可视化折线图
首先,我们需要定义研究区域(AOI),并将地图居中显示在该区域。通过以上步骤,您可以轻松地使用GEE处理TRMM 3B42降水数据,并导出2014年的月度平均降水数据。这些数据可以用于区域气候分析、水文模型验证等研究。如果有任何问题,欢迎随时联系作者。原创 2025-04-19 08:00:00 · 384 阅读 · 0 评论 -
GEE图表——在Google Earth Engine分析ERA5月均温度数据(时序图表和可视化)
在本篇博客中,我们将展示如何使用Google Earth Engine(GEE)加载和处理ERA5月均温度数据,并分析特定区域(ROI)的温度变化趋势。我们将从加载区域数据开始,计算温度的平均值,并绘制温度变化图表。通过以上步骤,我们成功地加载了ERA5月均温度数据,计算了ROI区域的平均温度,并绘制了温度变化趋势图。这种方法可以应用于其他区域和数据集,帮助我们更好地理解和分析气候变化的趋势。如果你对GEE感兴趣,可以尝试运行以上代码,并根据需要调整参数和区域。希望这篇博客对你有所帮助!原创 2025-04-18 08:00:00 · 315 阅读 · 0 评论 -
GEE图表:使用GEE处理TRMM 3B42数据,并导出2000年至2019年逐年平均降水数据和可视化
首先,我们定义研究区域(AOI),并将地图居中显示在该区域。通过以上步骤,您可以轻松地使用GEE处理TRMM 3B42数据,并导出2000年至2019年逐年平均降水数据。这些数据可以用于气候研究、水资源管理等领域。如果有任何问题,欢迎随时联系作者。原创 2025-04-12 10:39:16 · 382 阅读 · 0 评论 -
GEE可视化:SPEI(标准化降水蒸散指数)数据进行干旱监测,可视化不同的 SPEI 值分类干旱程度可视化分析
通过以上步骤,我们成功地使用 Google Earth Engine 对干旱进行了监测和分析。我们利用 SPEI 数据分类了不同的干旱等级,并通过图表展示了干旱的变化趋势。这种方法为干旱监测提供了强有力的工具,有助于制定相应的管理措施。如果你有任何问题或想法,请随时与我联系!原创 2025-04-08 07:30:00 · 997 阅读 · 0 评论 -
GEE 图表:使用 Google Earth Engine 分析2000-2023年温度时间序列与变化图表
首先,我们需要定义我们的研究区域(ROI)。在本示例中,我们将使用一个名为的矢量文件,并通过dt_code进行过滤。原创 2025-04-07 08:00:00 · 940 阅读 · 0 评论 -
GEE图表分析:使用 Google Earth Engine (GEE) 来处理 MODIS 海洋数据,分析特定区域内的水体特征(时序图表)
var roi =] */通过以上步骤,我们成功地使用 Google Earth Engine 处理了 MODIS 海洋数据,分析了特定区域的水体特征。希望这篇博客能帮助你理解如何使用 GEE 进行海洋数据分析。原创 2025-04-05 08:00:00 · 272 阅读 · 0 评论 -
GEE图表:使用 Google Earth Engine (GEE) 来监测特定区域的SPEI干旱情况的时序图表结果
首先,我们需要定义一个多边形区域,以便在该区域内进行干旱监测。]]);这里,我们定义了一个包含五个顶点的多边形,表示我们关注的地理区域。通过以上步骤,我们成功地使用 Google Earth Engine 监测了指定区域的干旱情况。希望这篇博客能帮助你理解如何使用 GEE 进行气候监测。原创 2025-04-03 08:00:00 · 298 阅读 · 0 评论 -
GEE图表:基于ERA5气象数据进行风速分析的时序分析和可视化
在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行风速分析的JavaScript代码。该代码主要用于计算特定区域内的风速,并导出结果为CSV文件。首先,我们定义一个多边形作为我们的感兴趣区域(ROI):2. 加载ERA5气象数据集接下来,我们加载ERA5气象数据集,选择风速的u和v分量,并过滤时间范围为2010年至2024年:3. 计算风速我们使用函数来计算风速,风速的计算公式为:[\text{风速} = \sqrt{(u^2) + (v^2)}]以下是计算风原创 2025-03-24 20:02:50 · 388 阅读 · 0 评论 -
GEE图表:分析Sentinel-1的合成孔径雷达(SAR)图像(上升和下降轨迹)时序图表的分析
在这里,geometry是我们之前定义的感兴趣区域。我们将地图的缩放级别设置为9,以便更好地查看该区域。原创 2025-03-23 08:00:00 · 1103 阅读 · 0 评论 -
GEE图表:分析特定区域的海表叶绿素浓度(Chlorophyll-a, Chl-a)的时间序列变化
首先,我们定义了一个点作为感兴趣区域(ROI),即我们要分析的区域。// 将国家边界添加到地图// 将地图中心设置为该点,缩放级别为4通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的海表叶绿素浓度时间序列变化。通过地图可视化和时间序列图,我们可以直观地观察到叶绿素浓度的空间分布和时间变化趋势。这些数据对于研究海洋生态系统健康、浮游植物动态以及气候变化的影响具有重要意义。原创 2025-03-21 08:00:00 · 477 阅读 · 0 评论 -
GEE 图表:沿 SF-Reno 横断面绘制海拔高度和季节温度图
GEE 图表:沿 SF-Reno 横断面绘制海拔高度和季节温度图。原创 2025-03-19 08:00:00 · 554 阅读 · 0 评论 -
GEE 图表:利用Oregon State/PRISM/Norm81m数据绘制美国各州的季节平均气温图
GEE 图表:利用Landsat绘制美国各州的季节平均气温图Oregon State/PRISM/Norm81m是一个关于气象数据的数据集。该数据集提供了81个气象站点的气象观测数据,包括温度、降水量、风速等多种气象要素。这些站点遍布全球各地,包括北美、南美、欧洲、非洲、亚洲和澳大利亚。数据集的时间范围从1961年到2019年,并且每天提供了逐小时的数据。数据以NetCDF格式存储,每个文件包含一个气象要素的观测数据。可以使用各种气象数据处理工具,如Python的xarray库,来处理和分析这些数据。原创 2025-03-18 08:00:00 · 880 阅读 · 0 评论 -
GEE 图表:使用 Google Earth Engine 计算并分析了特定区域的2015-2024年植被状况指数(VCI)时间序列
首先,我们需要定义我们的研究区域(ROI)。在本示例中,我们将使用一个名为的矢量文件,并通过dt_code进行过滤。原创 2025-03-17 08:00:00 · 686 阅读 · 1 评论 -
GEE图表——分析和可视化特定区域的土壤pH值,使用OpenLandMap土壤pH值数据集,探索不同深度的土壤pH值分布
该数据集提供了1950-2018年间,全球不同深度(0cm, 10cm, 30cm, 60cm, 100cm, 200cm)的土壤pH值估算,范围在4.2到11之间。我们将使用OpenLandMap提供的土壤pH值数据集,探索不同深度的土壤pH值分布,并创建交互式地图和图表。这段代码将分别处理0cm, 10cm, 30cm, 60cm, 100cm, 和 200cm 深度的土壤pH值数据,并将结果添加到地图、打印统计信息和直方图,以及导出裁剪后的图像。你可以根据自己的兴趣修改此坐标,选择你关注的区域。原创 2025-03-16 08:00:00 · 481 阅读 · 0 评论 -
Google Earth Engine图表: 计算了特定区域的土壤水分含量,并在地图上进行了可视化和时序图表
在这篇博客中,我们将使用 Google Earth Engine (GEE) 来计算特定区域的土壤水分含量。我们将使用 NASA 的 SMAP 数据集,并在地图上进行可视化。首先,我们需要定义一个点的地理位置,这里以瑞士的某个地点为例:2. 获取城市边界接下来,我们可以使用城市边界数据来限制我们的分析区域:3. 获取土壤水分数据我们将使用 SMAP 数据集中的植被水分含量数据,并在指定日期范围内进行筛选:在这里,我们将水分数据乘以 1000,以便将其转换为克每平方米(g/m²)。我们可以打印出土壤原创 2025-03-15 08:00:00 · 542 阅读 · 0 评论 -
GEE图表:来分析和可视化特定区域的土壤粘土含量,将使用OpenLandMap提供的土壤粘土含量数据集,探索不同深度的土壤粘土含量分布,并创建交互式地图
我们将使用OpenLandMap提供的土壤粘土含量数据集,探索不同深度的土壤粘土含量分布,并创建交互式地图和图表。该数据集提供了全球不同深度(0cm, 10cm, 30cm, 60cm, 100cm, 200cm)的土壤粘土含量估算,单位是 % (kg/kg),即千克每千克(质量分数百分比)。我们继续使用之前的地理坐标点作为研究区域的中心(这次博客的代码示例中,这个点仍然位于埃及,但注释中提到了“CHINA”,请注意这一点。或者,你也可以使用城市边界数据,仅针对你所在的城市运行此代码。原创 2025-03-13 08:00:00 · 384 阅读 · 0 评论 -
GEE图表分析——使用 Google Earth Engine 成功地分析了特定区域的沙土含量,并可视化了不同深度的沙土数据
/ 你可以使用国家边界,并仅针对你的城市运行此代码在这段代码中,我们使用一个点的坐标来确定国家边界,并将其添加到地图上。print('统计信息 for ' + name, stat);});通过以上步骤,我们使用 Google Earth Engine 成功地分析了特定区域的沙土含量,并可视化了不同深度的沙土数据。最终,我们还创建了一个图例,以帮助用户更好地理解可视化结果。原创 2025-03-11 08:00:00 · 403 阅读 · 0 评论 -
GEE图表——使用 Google Earth Engine 成功地分析了特定城市的土壤分类,并计算了各个土壤分类的面积(饼图)
/ 你可以使用城市边界,并仅针对你的城市运行此代码在这段代码中,我们使用一个点的坐标来确定城市边界,并将其添加到地图上。通过以上步骤,我们使用 Google Earth Engine 成功地分析了特定城市的土壤分类,并计算了各个土壤分类的面积。最终,我们还绘制了一个饼图,直观展示了不同土壤分类的面积比例。这种方法可以为环境管理和土地利用规划提供重要的信息。希望本文能帮助你更好地理解和应用 GEE 进行地理空间数据分析。原创 2025-03-10 08:00:00 · 502 阅读 · 0 评论 -
GEE图表——在Google Earth Engine中获取、处理和可视化降水累积数据
/ 将国家边界添加到地图首先,我们定义了一个几何图形(geometry),表示我们感兴趣的区域。接着,我们从FAO的GAUL数据集中获取国家边界,并将其添加到地图上。通过这段代码,我们展示了如何在Google Earth Engine中获取、处理和可视化降水累积数据。利用GEE的强大功能,我们可以轻松分析环境变化,为研究和决策提供支持。希望这篇博客能够帮助你更好地理解如何使用GEE进行降水累积分析!原创 2025-03-08 08:00:00 · 280 阅读 · 0 评论 -
GEE图表——如何在Google Earth Engine中获取、处理和可视化参考蒸散发数据
/ 将国家边界添加到地图首先,我们定义了一个几何图形(geometry),表示我们感兴趣的区域。接着,我们从FAO的GAUL数据集中获取国家边界,并将其添加到地图上。通过这段代码,我们展示了如何在Google Earth Engine中获取、处理和可视化参考蒸散发数据。利用GEE的强大功能,我们可以轻松分析环境变化,为研究和决策提供支持。希望这篇博客能够帮助你更好地理解如何使用GEE进行参考蒸散发分析!原创 2025-03-07 08:00:00 · 351 阅读 · 0 评论 -
GEE图表:创建多边形,选择哨兵-2 数据,显示多边形上每个可用的波段平均值时间序列图表并通过点击研究区任意点来展示指定时间的RGB影像
创建多边形,选择哨兵-2 数据,显示多边形上每个可用的波段平均值时间序列图表。并通过点击研究区任意点来展示指定时间的RGB影像。原创 2025-03-06 08:00:00 · 700 阅读 · 0 评论 -
GEE图表:绘制指定区域的地表温度时序图表
GEE图表:绘制指定区域的地表温度时序图表。原创 2025-02-23 17:27:04 · 808 阅读 · 0 评论 -
GEE图表专项:在 Google Earth Engine 中分析并可视化了蒸气压数据
/ 将国家边界添加到地图上// 将地图中心移至定义的几何形状。原创 2025-02-28 08:00:00 · 780 阅读 · 0 评论 -
GEE图表:基于MOD13A2中NDVI趋势数据时序图表和可视化展示
首先,我们定义一个感兴趣区域(ROI),在这里我们选择了一个特定的点作为我们的研究区域。// 将国家边界添加到地图在这段代码中,我们使用了来创建一个点,并通过获取包含该点的国家边界。通过以上步骤,我们成功地使用Google Earth Engine对NDVI进行了计算和可视化。这段代码展示了如何从MODIS数据集中提取信息,并将其应用于环境监测和植被健康评估。希望这篇博客能帮助你更好地理解NDVI的计算过程及其在遥感中的应用。原创 2025-02-28 08:00:00 · 494 阅读 · 0 评论 -
GEE图表:使用CHIRPS降水数据并生成动画GIF以西班牙为例
首先,我们需要定义一个感兴趣的区域。我们将使用一个点和一个多边形来表示该区域。region =接下来,我们从FAO的GAUL数据集中加载国家边界,并将其添加到地图上。// 将国家边界添加到地图我们定义一个时间范围,并生成每个16天间隔的开始日期序列。// 16天间隔// 生成每个16天间隔的开始日期序列我们定义降水的可视化参数,以便为动画帧创建可视化图像。min: 0, // 最小降水量(毫米/天)max: 50, // 最大降水量(毫米/天)palette: [],原创 2025-02-27 07:45:00 · 391 阅读 · 0 评论 -
GEE图表可视化:基于MODIS的日间地表温度(LST)数据集分析特定区域的温度异常时序图表
首先,我们需要定义一个多边形区域,作为我们分析的基础。通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的温度异常。这项技术为环境监测和气候研究提供了强大的工具。希望这篇博客能帮助你更好地理解如何使用GEE进行数据分析!原创 2025-02-26 08:00:00 · 657 阅读 · 0 评论 -
GEE 图表:基于MOD16A2蒸散发数据时序分析和可视化(加载图例的西班牙为例)
蒸散发(Evapotranspiration,简称ET)是水文学和生态学中的重要概念,代表了水从地表和植被通过蒸发和蒸腾过程返回大气的总量。本文将展示如何使用Google Earth Engine(GEE)分析MODIS蒸散发数据。原创 2025-02-24 08:00:00 · 517 阅读 · 0 评论 -
GEE图表:基于CHIRPS数据进行逐年月的降水时序分析(柱状图)
首先,我们需要定义一个感兴趣的区域(AOI)。// 定义感兴趣区域var aoi =接下来,我们定义分析的时间范围。// 分析的时间范围// 自定义时间间隔的数据聚合函数}));通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的降水异常,并将结果可视化和导出。这一过程展示了GEE在气候数据分析中的强大能力,能够帮助我们更好地理解降水变化及其对环境的影响。如果您有任何问题或建议,欢迎在评论区留言!原创 2025-02-23 08:00:00 · 440 阅读 · 0 评论 -
GEE教程:基于MCD12Q1数据的土地分类数据特定地区的裸地面积增长趋势
/ 使用 FAO/GAUL 数据集定义国家边界并根据几何图形进行过滤// 将国家边界添加到地图country变量使用 FAO/GAUL 数据集定义国家边界,并通过在地图上显示。通过以上步骤,我们成功地使用 Google Earth Engine 分析了特定地区的裸地面积增长。这种分析对于环境监测和土地管理具有重要意义。希望这篇博客对你有所帮助!原创 2025-02-16 01:00:00 · 373 阅读 · 0 评论 -
GEE 图表:分析摩苏尔水库流域的土壤湿度和降水数据,计算并可视化时序图表
定义研究的起始和结束年份,以及月份。函数定义:包括将降水量单位从mm/hr转换为mm/day,以及计算降水异常的函数。这段代码的主要目的是通过分析摩苏尔水库流域的土壤湿度和降水数据,计算并可视化它们的异常情况,帮助研究者理解水资源的变化及其影响。原创 2025-02-03 02:00:00 · 1456 阅读 · 0 评论 -
GEE 教程——基于sentinel-2数据的NDVI和EVI指数的对比
GEE 教程——基于sentinel-2数据的NDVI和EVI指数的对比NDVI(Normalized Difference Vegetation Index)和EVI(Enhanced Vegetation Index)是两种常用的植被指数,用于评估植被生长状况和活力。NDVI是最常见的植被指数之一,通过计算红外波段和可见光波段的差异来评估植被的绿度。NDVI的计算公式为:(NIR - Red) / (NIR + Red),其中NIR为近红外波段反射值,Red为红光波段反射值。原创 2025-01-20 02:30:00 · 1523 阅读 · 0 评论 -
GEE训练教程——基于MOD13A2的EVI数据进行1年之内的可视化时间序列图表并导出指定区域的EVI影像
*/这段代码定义了一个多边形的地理区域,表示一个矩形区域,坐标为四个角点。该区域的颜色和显示属性在注释中定义,但在代码执行中并不影响功能。这段代码的主要目的是从 MODIS 数据集中提取 EVI 信息,计算每日 EVI,并进行可视化和导出。原创 2025-01-10 04:00:00 · 132 阅读 · 0 评论 -
GEE 图表——基于ERA5、GLDAS、CFSV2、SMAP和GSFC不同气象数据的图表可视化分析
定义了多个气象数据集,包括每日和每月的ERA5陆地数据、GLDAS、CFSV2、SMAP和MERRA-2等。这段代码实现了从多个气象数据集中计算净短波辐射,并将其进行可视化和比较。通过散点图可以直观地查看不同数据集之间的关系及其一致性。原创 2024-12-25 16:00:00 · 641 阅读 · 0 评论 -
GEE 图表——基于sentinel-1数据的指定波段的时序图表分析和可视化
GEE 图表——基于sentinel-1数据的指定波段的时序图表分析和可视化。原创 2024-12-25 11:30:00 · 489 阅读 · 0 评论 -
GEE训练教程——ECMWF/ERA5_LAND/DAILY_AGGR数据的地表温度的时序分析
GEE训练教程——ECMWF/ERA5_LAND/DAILY_AGGR数据的地表温度的时序分析。原创 2024-12-07 15:30:00 · 670 阅读 · 0 评论 -
GEE 训练教程——基于NASA/GPM_L3/IMERG_V07降水数据的时序图表分析
GEE 训练教程——基于NASA/GPM_L3/IMERG_V07降水数据的时序图表分析。原创 2024-12-07 10:00:00 · 1722 阅读 · 0 评论