【信贷风控30分钟精通41】风控策略监控、预警和异常处置

本文详细阐述了风控策略执行过程中的监控与预警机制,包括贷前转化、产品转化、风控转化、贷后逾期及资产监控等多个维度。重点介绍了异常处置方法,如转化异常和贷后逾期异常的原因分析及应对措施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

风控策略的监控与预警

贷前转化监控

产品转化监控

风控转化监控

贷后逾期监控

资产监控

交易量监控

资产余额监控

风险预警

贷前转化预警

贷后风险预警

风控策略异常处置

转化异常处置

贷后逾期异常处置


风控策略制订并部署上线后,其执行的准确性和稳定性对信贷业务而言至关重要。

风控策略的监控与预警

为了能够在第一时间发现风控策略的异常问题,我们需要进行全面的动态监控。下面从贷前转化监控、贷后逾期监控和资产监控3个维度介绍监控的具体内容,同时介绍风险预警

贷前转化监控

贷前转化监控是对客户从激活App到放款的整个流程中各环节转化率的变化进行监控。转化主要涉及激活App、注册、进件和放款环节,我们可将其理解为一个虚拟漏斗。根据信贷业务流程,我们可以将贷前转化监控拆分为产品转化(从激活App到进件)监控和风控转化(从进件到放款)监控。

产品转化监控

产品转化监控一般是指对客户从激活App之后到申请借款之前的转化率进行监控。通过产品转化监控,我们可以发现客户在使用产品过程中出现流失的主要环节,然后,我们可优化相应步骤,从而提升产品性能和客户体验水平。产品转化监控的主要对象包括激活量、注册量和进件量等指标,时间周期可以是天、周或月等。必要时,可加上实时监控,如监控过去1小时的转化情况。

风控转化监控

风控转化监控是监控客户从进件到放款的漏斗转化,涉及的策略有规则策略、模型策略和人审策略等。风控转化监控的监控对象包括规则命中率、模型通过率、机审转化率、人审通过率和风控转化率等。时间周期一般以天、周、月和小时等时间粒度为主。

通过风控转化监控,我们能及时发现客群或数据的变化,据此可以有针对性地制订策略调整方案。当产品涉及多个获客渠道时,我们可拆分渠道以进行风控转化监控。当采用相同风控策略的不同渠道对应的风控转化率出现明显差异时,我们可根据不同渠道风控转化率与贷后表现实施差异化的投放策略,从而提高优质渠道的比例。此外,对规则策略步骤的转化率进行细化、拆分和监控,可以更好地发现规则异常。

贷后逾期监控

贷后逾期监控是指对放款客户的逾期率相关指标进行监控。贷后逾期监控可以及时反映风控策略的有效性,发现市场的风险变化,以利于及时制订并调整风控策略,保证风险持续可控。

不同信贷产品,贷后逾期监控的指标有所不同,设计监控方案时,我们应针对新老客、不同渠道客群等分别进行监控。对于监控指标的设计,我们可以考虑以下5点。

  • 统计样本的口径,可以按照一个放款周期进行统计(统计逾期率),也可以按照每一个还款周期进行统计(统计入催率、回款率)。
  • 统计的表现时间范围,可以包含MOB0、MOB3、MOB6和MOB12等。
  • 统计的对象,可以为首期还款的逾期天数(FPDO+、FPD10+和FPD30+等),也可以是截至统计表现期末时间点的逾期天数(DPDO+、DPD10+和DPD30+等),或者统计其间历史最大的逾期天数(EVERO+、EVER10+和EVER30+等),以及入催率、回款率等指标。
  • 统计的数值,可以是订单数量口径或订单金额口径。
  • 监控的更新周期包括天、周和月等。

资产监控

资产监控是指在一个周期(一般是月或季度)内对信贷业务放款量、放款金额和贷款余额等指标进行的监控。通过资产监控,我们可以清晰地看到各阶段的放款额实际情况,从而方便地控制放款节奏。资产监控包括交易量监控和资产余额监控

交易量监控

交易量监控主要关注信贷业务实际放款情况,监控周期一般以日为单位,监控指标有不同渠道的放款金额、放款量、平均放款额、平均期限和预计全月放款额

资产余额监控

资产余额监控主要关注贷款余额变化,监控周期一般以周为单位,监控指标有贷款余额、未到期余额和逾期余额等。逾期余额又可拆分为不同逾期天数的在逾金额。

风险预警

风险预警是在监控指标的变化超过合理阈值后进行报警,主要包含贷前转化预警和贷后风险预警。通过风险预警,我们可以及时发现风控流程中的异常问题。风险预警通常通过企业微信、电子邮件、短信和电话等方式进行。

贷前转化预警

贷前转化预警的触发条件是某一时段(一般是天或小时)的转化率指标值超过预警阈值。预警阈值需要根据实际业务情况具体设置,可根据产品、渠道等维度拆分。例如,机审通过率的预警阈值为过去7天同时段机审通过率的平均值的1.2倍,在发现某地过去3小时的机审通过率大于该预警阈值时,需要发出报警信息。

贷后风险预警

贷后风险预警的触发条件是到期日的风险指标值超过预警阈值。预警阈值可设置为过去7天风险指标的平均值的1.2倍,当实际值大于该阈值时,就触发预警。在设置预警阈值时,我们需要排除周期性事件带来的影响。例如,周末或节假日时,人力不同程度的欠缺,可能导致催收相关指标的周期性波动。

风控策略异常处置

风险预警只是通知我们风控流程中是否发生异常,以及所处阶段,异常处置则需要有针对性地分析预警的异常,并给出应对方案。应对方案一般分为临时性解决方案、根本性解决方案和防止复发解决方案等。实施的解决方案往往需要根据具体原因来确定。在没有找到根本原因时,一般先采用临时性解决方案进行紧急处理,而后基于数据、事实的分析找到真正原因,并依据具体原因制订应对方案,从根本上解决问题。

转化异常处置

转化异常处置的情况大部分是某时段的转化率突然升高或降低,需要对此进行原因分析并给出应对方案。原因分析往往需要花费一定的时间,为了尽快使异常生成环境损失降到最低,首先会采取临时性解决方案,即收紧通过率到正常水平,然后进行原因排查分析。目前来说,转化异常处置主要分为如下6个方面。

  • 统计问题:确认各项指标的统计逻辑和数据报表显示是否正常。针对此类问题,我们应及时协调相关部门确认数据的正确性,待数据逻辑正常后,继续观察。
  • 产品异常,产品流程变更导致客户进件流程出现异常等。针对此类问题,我们应联合相关人员进行产品异常排查并修正。
  • 规则策略问题:检查相应日期是否有规则调整且调整是否符合预期,若符合,则需要继续观察;若不符合,则需要拆分规则命中率并做下一步分析。
  • 模型策略问题:检查相应日期是否有模型策略调整且调整是否符合预期,若符合,则需要继续观察;若不符合,则需要分析檬型分偏移情况。
  • 数据问题:检查规则和模型用到的数据是否出现问题,包括自有数据和第三方数据。
  • 客群变化:在其他环节都没有问题的情况下,我们需要判断是否为客群变化导致的异常。我们可以将转化指标通过渠道、地域和客户等维度拆分,并确认细分客群的转化指标变化是否正常。另外,从模型分的分布进行分析,判断客群是否有明显偏移,即决策模型分PSI的变化。必要时,我们需要对PSI较大(大于0.1)的特征逐一排查分析。在确认客群问题后,我们应与市场投放人员沟通投放策略是否需要调整,必要时,可根据不同维度制订差异化的风控策略。

贷后逾期异常处置

贷后逾期异常处置的情况通常是某日的贷后逾期率大幅提高,我们需要对此进行原因分析并给出应对方案。

贷后逾期异常的风险原因分析维度和处置方案如下。

统计问题:首先应检查当日逾期率计算逻辑是否正确、报表数据显示是否正常、样本
量是否满足统计显著性需求,以排除统计问题。
产品异常:检查客户还款或产品是否遇到问题,如支付通道异常、App闪退等。若是上述原因,则应联合相关部门(如客户端开发部门)进行产品异常排查并修正。风控策略问题:检查放款当日是否有风控策略调整,如果不符合调整预期,则应尽快优化策略。
催收问题:检查到期日当天是否有催收策略调整,或者催收人员管理问题,若有,则
应立即解决。
客群或市场问题:若对上述原因排查后,暂未发现异常,则需要对客群进行拆分以便做进一步分析。我们可以将逾期指标通过渠道、地域和客户等维度拆分,确认细分客群的逾期指标变化。若某渠道客群逾期率指标明显提高,则应分析此渠道是否进行过调整或其客群是否变差,必要时,对该渠道执行相对严格的风控策略;若某区域客群逾期率指标明显提高,则应判断此区域是否出现聚集性风险,必要时,对此区域关停进件。另外,我们还可分析决策模型各分数段对应逾期率的排序情况,确认逾期率各分数段是均上涨还是仅低分段上涨。若各分数段均上涨,则在一定程度上说明相关市场环境恶化;若只是低分段上涨,则说明客群有变差倾向,可通过收紧通过率降低贷后风险。

print('要天天开心啊')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值