【因果推断从入门到精通一】因果效应2

目录

对照组能解决问题吗?

多于两个人的情况也是一样的


对照组能解决问题吗?

我们首先会想到,我们只需要一个对照组就够了。这种想法虽然不全错,但也不对。什么是对照组?为什么一个对照组本身在估计一项处理导致的效应时是不够的呢?如果还有对照组有用,我们还需要别的哪些对照组呢?我们来看一个最简单的情况:有两个人,一个接受处理,另一个作为对照组。我们不再讨论只有华盛顿或w这样一个人的情况,我们现在讨论有两个人的情况:一个是吉姆或k,一个是詹姆斯或j。与华盛顿的情况一样,吉姆有两个潜在结果,即R_{Tk}R_{Ck},詹姆斯也有两个潜在结果,即R_{Tj}R_{Cj}。该处理对吉姆的影响是她的两个潜在结果的比较,即R_{Tk}-R_{Ck},而且因为吉姆要么接受了一项处理,要么没有接受该处理,我们无法同时看到R_{Tk}R_{Ck},所以我们不能计算她的因果效应R_{Tk}-R_{Ck}。所有这一切对于詹姆斯来说也是如此:他或者属于处理组,或者属于对照组,所以我们只能看到R_{Tj}R_{Cj},而不能同时看到两者,因此我们无法计算他的因果效应R_{Tj}-R_{Cj}

最开始,我们似乎有两个华盛顿问题:一个是吉姆的问题,一个是詹姆斯的问题,而两个问题就是两个问题,不是解决方案。然而,假设吉姆接受处理,詹姆斯进入对照组。这会有用吗?然后我们看到吉姆对处理的反应是R_{Tk},詹姆斯的对照反应是R_{Cj}。转念一想,这又似乎是相关的,比华盛顿的问题更好一些;至少我们看到了每种处理下的结果。没错,我们只有吉姆和詹姆斯,两个人似乎还不够,但如果因果推断只是需要更多的人,那么事情就好办了。我们是需要更多的人,但只有更多的人是不够的。因果推断无关乎更大的数据;它关乎更好的数据。

当然,我们的转念一想——去看同时处在处理T和对照C下的人们会有些好处——解决了华盛顿问题的一个方面。对照C的可能世界现在是一个事实,而不再是虚构的。如果人们实际上处在对照C下,那么我们在对照条件C的定义中就没有作任何规定。

我们的计划是让一些人接受处理T,另一些人接受对照C,然后比较接受处理T和C的人的结果。如果每个处理组都有很多人,那么我们或可比较每一组的平均结果对于两个人的情况,比较平均值就好像在比较吉姆的结果和詹姆斯的结果。如果吉姆被分到了T组,詹姆斯被分到了C组,那么我们估计处理效应为吉姆在T下的效应,即R_{Tk},减去詹姆斯在C下的效应,即R_{Cj},因此估计值为R_{Tk}-R_{Cj},它最大的吸引力在于,这是我们可以观察到的两个量之间的差。R_{Tk}-R_{Cj}可能错出去很多,但它是算术,不是形而上学。同样地,如果吉姆被分到了c组,詹姆斯被分到了T组,那么估计的效应就是R_{Tj}-R_{Ck},这也是我们观察到的两个量之差。这能行吗?

唉,还是不行。要想知道为什么不行,我们来假设,对于吉姆来说,在处理T和C之间无差异,即R_{Tk}=R_{Ck}或0=R_{Tk}-R_{Ck},所以无论吉姆是接受了T还是C,她的命运都一样。为了明确化,我们假设吉姆无论在T和C下都活了下来,所以1=R_{Tk}=R_{Ck}且0=1-1=R_{Tk}-R_{Ck}。我们还假设,对于詹姆斯来说,在处理T和C之间也无差异,即R_{Tj}=R_{Cj}或0=R_{Tj}-R_{Cj},但不像吉姆,詹姆斯在两种处理下都会死掉。简而言之,我们假设施加处理T而不是C对吉姆和詹姆斯都没有任何作用,但吉姆和詹姆斯本身是不同的,无论他们接受什么处理,他们都将面临不同的命运。

这里的困难是显而易见的。吉姆和詹姆斯是不同的人,有不同的结果,所以比较处理组的吉姆和对照组的詹姆斯并不能估计任何人的因果效应,既不能估计出吉姆的效应R_{Tk}-R_{Ck},也不能估计出詹姆斯的效应R_{Tj}-R_{Cj}。该处理对吉姆和詹姆斯没有效应,因此我们尝试估计的是零效应,因为吉姆为0=1-1=R_{Tk}-R_{Ck},詹姆斯为0=0-0=R_{Tj}-R_{Cj}。如果我们把处理T分配给吉姆,把处理C分配给詹姆斯,那么该效应的估计值不是零,而是R_{Tk}-R_{Cj}=1-0=1,因此,处理T误导性地似乎表现出完美的处理:它似乎拯救了所有人。如果我们把C分配给吉姆,把T分配给詹姆斯,那么处理T看起来就很糟糕了,即R_{Tj}-R_{Ck}=0-1=-1:它似乎杀死了所有人。

在这种假想的情况下,对吉姆和詹姆斯的平均处理效应(average treatment effect,ATE)当然是零:对吉姆是0=R_{Tk}-R_{Ck},对詹姆斯是0=R_{Tj}-R_{Cj},二者的平均值为(0+0)/2=0。为了计算平均处理效应,我们必须看到吉姆在处理T和C下的命运,以及詹姆斯在处理T和C下的命运,但一直以来的问题是:我们既不能看到吉姆的R_{Tk}-R_{Ck},也不能看到詹姆斯的R_{Tj}-R_{Cj},所以我们无法计算平均处理效应。

多于两个人的情况也是一样的

到目前为止,我们已经讨论了一个人(华盛顿或w)的情况,也讨论了两个人(吉姆和詹姆斯,或k和j)的情况。如果超过两人,情况并不会有什么变化。假设有I个人,其中I是某个数字,比如就像I=343。我们可以很自然地从1到343给每个人编号,或者一般是从1编号到I。我们用小写的i来指代某个人,就像我们用代词一样。我们不打算这样表达,即说某件事对编号为1的人是正确的,对编号为2的人也是正确的,乃至对编号为3的人也是正确的,直到最后我们说它对编号为343的人也是正确的,因为如果我们这样谈论343个人,你会觉得无法忍受,我也一样。所以我们简单地说某件事对于编号为i的人是正确的,i=1,2,…,1。也就是说,不管i是谁,我们都说某件事对i是正确的。

因果效应是一个特定的人在接受处理后的结果和同一个人在对照组条件下的结果的比较。因果推断之所以具有挑战性,乃是因为对于任何个体来说,我们永远不会看到两种结果。对于任何个体,如果属于处理组,则i的反应是r_{Ti};如果属于对照组,则i的反应是r_{Ci}。一项处理对个体i的效应是r_{Ti}-r_{Ci}。因果推断的挑战在于,我们看到的只是r_{Ti}r_{Ci},而不是两者都能被我们看到。

对于个体i,如果个体i在处理T和对照C下有相同的结果,那么处理T与对照C相比就没有影响,因此r_{Ti}=r_{Ci},因果效应为零,即0=r_{Ti}-r_{Ci}。如果这对每个人都成立——如果对于i=1,2,…,I,均有r_{Ti}=r_{Ci}, 那么在I个人的有限总体中,处理T与对照C相比对每个人都没有影响。

在I个个体的总体中,i=1,2,…,I,平均处理效应是I个因果效应的平均值,即r_{T1}-r_{C1}r_{T2}-r_{C2}、...、r_{TI}-r_{CI}的平均值。ATE是I个数的平均值,但是这些数都没有被观察到。

print('要天天开心呀')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值