神经网络机器翻译技术NMT

本文会首先介绍神经网络机器翻译(Neural Machine Translation )技术的原理,再介绍如何使用 TensorFlow NMT 训练一个中英翻译引擎。

 

一、Encoder -- Decoder模型的原理

Encoder-Decoder 模型是使用神经网络进行机器翻译的基本方法,一般也称作 Seq2Seq 模型 。原始的 N VS N RNN结构要求输入序列和输出序列等长,而Encoder-Decoder 模型可以有效地建模输入序列和输出不等长的问题 。 具体来说,它会先用一个 Encoder 将输入的序列编码为一个上下文向量 c, 再使用 Decoder对c进行解码,将之变为输出序列。对应到机器翻译问题中,输入的句子被 Encoder 编码为向量 c,c 中存储了神经网络对句子的理解,再利用 Decoder 解码 c,以生成翻译之后的句子 。

 

二、注意力机制

在 Encoder-Decoder 结构中, Encoder 把所高的输入序列都编码成一个统一的语义特征 c 再解码,因此, c 中必须包含原始序列中的所有信息,它的长度成了限制模型性能的瓶颈。如在机器翻译问题中 , 当被翻译的句子较长 时,一个 c可能无法存诸如此多的信息,翻译精度会下降 。注意力机制( Attention) 通过在每个时间输入不同的 c 来解决这个问题 。使用注意力机制后,每一个 c会自动选取与当前所要输出的 y最合适的上下文信息。

 

三、使用TensorFlow NMT 搭建神经网络翻译引擎

2017 年 7 月, Google 公司公布了基于 TensorFlow 构建的 NMT 项目,该项目采用了最新的深度学习技术,可以让每个人轻松地训练、自己的神经网络翻译引擎 。 NMT 项目支持基本的 Encoder-Decoder 结构,也支持注意力机制。

1、将越南语翻译为英语

(1)未使用注意力模型

TensorFlowNMT代码下载地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值