y = x n x^n xn
d y d x = lim Δ x → 0 ( x + Δ x ) n − x n Δ x \frac{dy}{dx}= \lim_{\Delta x \to 0} \frac{(x+\Delta x)^n-x^n}{\Delta x} \quad dxdy=Δx→0limΔx(x+Δx)n−xn
( x + Δ x ) n (x+\Delta x)^n (x+Δx)n可以通过二次项定理展开
( x + Δ x ) n = C n 0 x n + C n 1 x n − 1 Δ x + C n 2 x n − 1 Δ x 2 + . . . . . + C n n Δ x n (x+\Delta x)^n = C^{0}_{n}x^n +C^{1}_{n}x^{n-1}\Delta x+C^{2}_{n}x^{n-1}\Delta x^2+.....+C^{n}_{n}\Delta x^n (x+Δx)n=Cn0xn+Cn1xn−1Δx+Cn2xn−1Δx2+.....+CnnΔxn
C n m = n ! m ! ( n − m ) ! C^{m}_{n}= \frac{n!}{m!(n-m)!} Cnm=m!(n−m)!n!
C n 0 = C n n = 1 C^{0}_{n}=C^{n}_{n} = 1 Cn0=Cnn=1
d y d x = lim Δ x → 0 x n + C n 1 x n − 1 Δ x + C n 2 x n − 1 Δ x 2 + . . . . . + Δ x n − x n Δ x \frac{dy}{dx}= \lim_{\Delta x \to 0} \frac{x^n +C^{1}_{n}x^{n-1}\Delta x+C^{2}_{n}x^{n-1}\Delta x^2+.....+\Delta x^n-x^n}{\Delta x} \quad dxdy=Δx→0limΔxxn+Cn1xn−1Δx+Cn2xn−1Δx2+.....+Δxn−xn
分子第一个
x
n
x^n
xn和最后一个
x
n
x^n
xn约掉
d
y
d
x
=
lim
Δ
x
→
0
C
n
1
x
n
−
1
Δ
x
+
C
n
2
x
n
−
1
Δ
x
2
+
.
.
.
.
.
+
Δ
x
n
Δ
x
\frac{dy}{dx}= \lim_{\Delta x \to 0} \frac{C^{1}_{n}x^{n-1}\Delta x+C^{2}_{n}x^{n-1}\Delta x^2+.....+\Delta x^n}{\Delta x} \quad
dxdy=Δx→0limΔxCn1xn−1Δx+Cn2xn−1Δx2+.....+Δxn
分子和分母都含有 Δ x \Delta x Δx ,可以约分,
d y d x = lim Δ x → 0 C n 1 x n − 1 + C n 2 x n − 1 Δ x + . . . . . + Δ x n − 1 \frac{dy}{dx}= \lim_{\Delta x \to 0} {C^{1}_{n}x^{n-1}+C^{2}_{n}x^{n-1}\Delta x^+.....+\Delta x^{n-1}}\quad dxdy=Δx→0limCn1xn−1+Cn2xn−1Δx+.....+Δxn−1
解这个极限, Δ x \Delta x Δx趋近0的时候,直接带入该极限,
d y d x = C n 1 x n − 1 \frac{dy}{dx}= {C^{1}_{n}x^{n-1}} dxdy=Cn1xn−1
C n 1 = n C^{1}_{n} = n Cn1=n
d y d x = n x n − 1 \frac{dy}{dx}= {nx^{n-1}} dxdy=nxn−1