一种用于指导模拟 IC 布局的定制图神经网络模型

本文介绍了一种创新的图神经网络模型PEA,专门用于预测模拟集成电路布局对性能的影响,并实现知识在不同拓扑间的转移。相较于基于CNN的方法,PEA在准确性、知识转移和训练效率上均有显著提升,助力性能驱动的自动布局接近手动设计水平。
摘要由CSDN通过智能技术生成

摘要

模拟ic放置通常是一个手动过程,需要强大的经验和反复试验的迭代,因为它以复杂的方式对电路性能产生很大的影响。尽管自动模拟放置已经研究了数十年,但现有方法不足以实现与手动设计相当的性能。在这项工作中,开发了一种定制的图神经网络模型,用于预测放置对电路性能的影响。通过这种模型获得的知识可以在相同电路类型的不同拓扑之间传输。仿真结果表明,所提出的模型在准确性和知识转移方面均优于最近基于CNN的工作。它还优于图形注意网络的插件使用。所提出的模型进一步应用于模拟ic放置,并实现了与手动设计相似的性能。

背景

模拟 IC 性能很大程度上取决于 RC 寄生效应,而 RC 寄生效应很大程度上取决于电路布局。 这种依赖性可能非常复杂,因为多个相互竞争的性能特征会以相互交织的方式受到众多 RC 元件(线段)的影响。 因此,模拟 IC 版图设计大体上仍是一门手工艺术。 获得良好的模拟电路布局通常需要经验丰富的设计人员进行多次设计迭代。

调研

自动模拟 IC 布局已经研究了几十年 [1-14]。 模拟布局的一个重点是强制执行某些几何约束 [3, 5, 7],例如对称性和公共质心。 尽管此类约束有助于提高对变化的容忍度,但它们并不能直接解决标称性能。 在 [1] 中,性能规范被转换为几何约束,例如线段的最大长度。 然而,性能对布局的复杂依赖性在转换中被过度简化,因此获得的几何约束要么不必要地紧,要么不足以保证性能。 性能在 [2] 的模拟布局中直接优化。 然而,它的性能模型是线性近似的,因此不能处理模拟电路的许多非线性行为。 [6, 8] 中考虑了与某些性能特征直接相关的一些几何约束,但它们很难扩展到一般性能指标。 设计知识重用是通过**保留遗留设计模式[10]**而不直接考虑性能来实现的。 直到今天,在工业中采用自动模拟放置的情况还很少见,因为它对性能的承诺仍然很弱。

最近,已经探索了各种机器学习技术用于模拟电路合成[15-20]。 在 [15] 中,GNN(图神经网络)被应用于为射频电路中的无源元件生成布局模板。 提出了一种用于模拟电路设计的基于 GAN(生成对抗网络)的井生成技术 [16]。 [17] 中使用变分自动编码器从手动布局中学习并提供路由指导。 [18] 的工作利用 GCN(图卷积网络)来识别模拟子电路。 [19] 中介绍了一种基于 CNN(卷积神经网络)的模拟电路性能模型。 模拟晶体管尺寸由 GCN 和强化学习 [20] 自动化。

在这项工作中,我们试图在性能驱动的模拟 IC 布局方面取得进展。 开发了一种称为 PEA(具有边缘注意的池化)网络的机器学习模型,用于从布局解决方案中预测电路性能。 PEA 网络不是使用现有机器学习技术的插件,而是一种定制的图神经网络,它包含 GAT(图注意力网络)[21] 和 DiffPool [22] 作为关键成分。 通过 PEA 网络获得的知识可以在相同电路类型的不同拓扑之间传递。 仿真结果表明,PEA 显着优于最近基于 CNN(卷积神经网络)的模型 [19]。 它用于指导模拟布局并实现类似于手动设计的性能。 这项工作的贡献包括以下内容。
• 开发了一个 GNN(图神经网络)模型,用于预测给定布局解决方案的模拟电路性能。 • 这是一个非常定制的模型,而不是现有机器学习技术的插件使用。 • 所提出的模型允许在一类模拟电路的不同拓扑结构之间进行知识转移。 • 所提出的模型在预测准确性、知识转移和训练时间方面明显优于最新的先前工作[19]。 它也比 GAT 的插件使用更准确,GAT 是最有影响力的 GNN 技术之一。 • 该模型应用于性能驱动的模拟布局,实现与手动设计相似的性能,但速度要快几个数量级。

基础理论

由于图模型在许多计算应用中的普遍使用,人们努力将 CNN 的成功扩展到图领域。 已经开发了许多图神经网络(GNN)技术,并在 [23] 中提供了一项调查。 图 G(V, E) 由一组节点 V 和一组边 E 组成。节点的数量由 𝑛 = |V| 表示。 边可以用邻接矩阵𝐴 ∈ {0, 1}𝑛×𝑛 表示。 每个节点 𝑣𝑖 ∈ 𝑉 与一个特征向量(𝑥1,𝑥2,…,𝑥𝑑)相关联。 所有节点的特征形成一个矩阵𝑋 ∈ R𝑛×𝑑。 经过训练的 GNN 将 𝑋 作为输入,并决定整个图的类别或图中每个节点的类别。 接下来,我们介绍了两种重要的技术,基于注意力的图卷积和图池化,这两种技术都用于我们定制的 GNN。

基于注意力的图卷积

图卷积是 CNN 中空间卷积的扩展。 它的关键概念是聚合。 也就是说,一个节点𝑣𝑖 ∈ V 收集其相邻节点的特征信息。 在聚合之前,通常将转换执行为𝑋𝑊,其中𝑊 ∈ R𝑑×𝑑 是可训练的权重矩阵。 然后,聚合的框架是 Φ𝐴𝑋𝑊,其中 Φ𝐴 ∈ R𝑛×𝑛 是一个取决于 𝐴 或边缘连接的矩阵。 Φ𝐴的形式因不同的 GNN 技术而异。 节点嵌入获得为
在这里插入图片描述

其中 𝜎(·) 是激活函数,例如 sigmoid 函数。 通常,此过程通过多次迭代重复并生成多层嵌入𝑍(0) = 𝑋(1) = 𝑋, 𝑍(1) = 𝑋(2) , 𝑍(2) = 𝑋(3) … 一个通用的图卷积操作被描述为
在这里插入图片描述
其中 𝑙 是图层索引。请注意 𝑊(𝑙) ∈ R 𝑑𝑙 × 𝑑𝑙 1 ,这意味着特征维度 𝑑 可以根据不同的配置逐层变化。Φ 𝐴 的形式是通过最近流行的图形注意网络 (GAT) [21] 阐述的。节点 𝑣 𝑗 到 𝑣𝑖 的注意力系数 𝛼𝑖 𝑗 由
在这里插入图片描述
其中𝑎 (𝑙) ∈ R2𝑑𝑙+1 是可训练的权重向量,𝑋(𝑙) 𝑖 是与节点𝑣𝑖 对应的向量,N𝑖 是节点𝑣𝑖 的邻域,· 是向量内积运算,𝑇 表示向量转置,|| 是向量串联运算。 请注意这里的 softmax 是逐行的,因为分母中的 𝑘 枚举了行 𝑖 的列。 LeakyReLU 是一个非线性函数,定义为
在这里插入图片描述
其中𝑐 ∈ [0, 1) 是一个参数。 基于注意力的图卷积描述为𝑍(𝑙) = 𝜎(𝛼𝑋(𝑙)𝑊(𝑙) ) (4)
其中 𝛼 ∈ R𝑛×𝑛 是一个矩阵,其中 𝛼𝑖 𝑗, 𝑖, 𝑗 = 1, 2, …, 𝑛 作为其条目。

图池化

这是将 CNN 中的池化操作迁移到图域中,一种众所周知的方法称为 DiffPool [22]。 这里的池化类似于图聚类,一个集群为下一次迭代/层形成一个新节点。 在迭代 𝑙 处,节点数从 𝑛𝑙 变为 𝑛𝑙+1,其中 𝑛𝑙+1 < 𝑛𝑙 且 𝑛0 = 𝑛。 聚类是通过分配矩阵 𝑆 (𝑙) ∈ R𝑛𝑙×𝑛𝑙+1 实现的,其中每一行对应于层 𝑙 的一个节点,每一列表示层 𝑙 + 1 的一个集群(新节点)。因此, 𝑆 (𝑙) 的第 𝑖 行和 𝑗 列是将节点 𝑣 (𝑙) 𝑖 分配到集群 𝑣 (𝑙+1) 𝑗 的概率,即这是软聚类。 层𝑙的分配矩阵定义为
在这里插入图片描述
其中 𝑊(𝑙) 𝑝𝑜𝑜𝑙 ∈ R𝑑𝑙×𝑛𝑙+1 是一个可训练的权重矩阵。 此外,𝐴~(𝑙) = 𝐴(𝑙) +I,其中 I 表示单位矩阵,~𝐷 (𝑙) ∈ R𝑛𝑙×𝑛𝑙 是对角矩阵,其中𝐷~ (𝑙) 𝑖𝑖 = Í𝑛𝑙 𝑗=1 𝐴 〜(𝑙)𝑖𝑗。 ~𝐷 (𝑙) 对角线上的每个元素代表对应节点的入度。 矩阵中所有条目的逐行 softmax 操作保证层 𝑙 中的每个节点都分配给层 𝑙 + 1 中的集群,概率总和为 1。
池化操作是通过 𝑋(𝑙+1) = 𝑆 (𝑙) T 将嵌入 𝑍(𝑙) 聚合到下一层,然后通过 𝐴(𝑙+1) = 𝑆 (𝑙) T 𝑍(𝑙) 𝐴( 𝑙) 𝑆 (𝑙) (6) (7) 池化操作通常与每一层的图卷积一起应用。

PEA:定制的 GNN 模型

我们描述了一个定制的 GNN(图神经网络)模型,称为 PEA,它是 Pooling with Edge Attention 的首字母缩写。 它以模拟布局解决方案作为输入,并预测其布线后性能是否令人满意。 性能特性的示例包括 OTA(运算跨导放大器)的增益和相位裕度。 训练数据中的性能标签是从布局后的电路仿真结果中获得的。 GNN 与 CNN 对比? 在 [19] 中,一个类似目的的模型采用了 CNN(卷积神经网络)并将放置图像作为其特征。 可以说,GNN 在捕获网表拓扑(图)方面更胜一筹。 此外,GNN 在特征编码方面效率更高。 例如,晶体管的形状可以用 GNN 中的两个实数(宽度和高度)来表示,而 CNN 需要一个像素阵列。 通过将位置坐标作为特征,空间特征可以很容易地包含在 GNN 中。 这些观察促使我们采用 GNN 方法。【解释了为什么用GNN】

电路图和特征

电路的网络表可以自然编码到一个有向图G(V,E),其中设备和IO引脚是图节点V和设备之间的连接是图边E。图2显示了一个编码5T OTA(5晶体管操作跨导放大器)到电路图的例子。

该图以邻接矩阵的形式表示。节点特征矩阵 𝑋 ∈ R𝑛×𝑑 和边缘特征矩阵 𝐸 ∈ R𝑛×𝑛×𝑝 ,其中𝑛 = |V| 是节点数,𝑑是每个节点的特征数,𝑝是每条边的特征数。 请注意,邻接矩阵中的每个条目通常为 0 或 1。在 PEA 中,执行软聚类,两个节点之间的邻接可以是概率。
在这里插入图片描述
在节点特征矩阵中,𝑋𝑖 ∈ R𝑑,𝑖 = 1, 2, …, 𝑛,表示第 𝑖 节点的特征向量。 𝑑 功能包括以下内容。
• 器件类型:PMOS、NMOS、电容、电流源、GND等;
• 器件所属的功能模块,如偏置电流镜、差分对和有源负载;
• 设备尺寸;
• 设备位置。
在边特征矩阵中,𝐸𝑖 𝑗 ∈ R𝑝, 𝑖, 𝑗 = 1, 2, …, 𝑛,表示从节点𝑗到节点𝑖的边的特征。 一个节点(设备)通常有多个引脚。 我们使用𝑝𝑖𝑛ℎ𝑖和𝑝𝑖𝑛𝑢来表示设备𝑣𝑖 ∈ V 的引脚𝑗和设备𝑣𝑗 ∈ V 的引脚连接。 𝑝 功能包括以下内容。
• 𝑝𝑖𝑛ℎ 𝑖 和 𝑝𝑖𝑛𝑢 𝑗 之间的水平和垂直距离;
• 𝑝𝑖𝑛ℎ 和 𝑝𝑖𝑛𝑢 𝑖 的金属层 • 𝑝𝑖𝑛ℎ 和 𝑝𝑖𝑛𝑢 𝑖 𝑗 的长度; 𝑗;
𝑝𝑖𝑛ℎ 和 𝑝𝑖𝑛𝑢 𝐴 ∈ [0, 1]𝑛×𝑛 的类型,节
直观地说,由于电路性能受节点特征(晶体管的尺寸/尺寸等)和边缘特征(两个晶体管引脚之间的距离等)的影响,我们将它们都应用到我们的 PEA 网络的注意力机制中。 通过这种方式,相邻节点的信息根据其节点特征和连接关系进行聚合。

PEA(Pooling with Edge Attention)网络

所提出的 PEA 网络由两个阶段组成:特征提取器和预测器,如图 1 所示。提取器由多个 PEA 层组成,每个层都包括图卷积和图池化。 预测器是一个全连接的神经网络,也就是多层感知器(MLP)。 由于 MLP 相对众所周知,因此描述将集中在提取器上。
PEA 网络的关键成分是边缘特征/注意力和图池之间的集成。 2.2节简要介绍的池化是为了理解电路层次结构。 边缘特征/注意力是捕获设备之间的连接。 边缘特征/注意力[24]不是节点的简单扩展。 此外,它还没有与仅限于节点特征的图池[22]集成。 PEA 网络的一个主要贡献是为边缘特征/注意力启用池化。 一个 PEA 网络由四个阶段组成:(1)边缘感知注意力构建和压缩。 (2) 图卷积。 (3) 节点池化。 (4) 边缘池化。 我们的定制主要在第 1 和第 4 阶段进行,为了完整起见,在此简要描述第 2 和第 3 阶段。 算法 1 中总结了一个 PEA 层的概述。

1*边缘感知注意力构建和压缩。

在 [24] 中,通过将注意力矩阵从 2D(参见第 2.1 节)扩展到 3D,使得 𝛼(𝑙) ∈ R𝑛𝑙×𝑛𝑙×𝑝𝑙 提出了边缘注意,其中对应于 𝑝𝑙 的第三维用于边缘特征,称为通道。 虽然这种方法有其优点,但在运行时和内存使用方面都相当昂贵。 为了克服这个缺点,我们提出了一种新的边缘感知注意力模型,其中原始注意力被定义为
在这里插入图片描述
和 𝜏𝑖 𝑗 由等式 (2) 给出。 这是算法 1 的第 2 步。然后,通过双向归一化(BN)得到注意力矩阵:
在这里插入图片描述
归一化对应算法1中的步骤3和4。它避免了乘法计算溢出,并保证在每个通道𝑘中,𝛼(𝑙)的每一行每一列的和为1。
我们进一步将3D注意力矩阵压缩为 2D 由压缩算子𝑔 : R𝑝𝑙 → R 定义为
在这里插入图片描述
其中𝑏 (𝑙) ∈ R𝑝𝑙 是一个可训练的权重向量。

2图卷积

在注意力压缩之后,图卷积的执行方式与传统方法(第 2.1 节)相同,只是注意力被压缩的 𝑔(𝛼(𝑙) ; 𝑏 (𝑙) ) 取代,因此算法 1 的步骤 5 涵盖 算法 1 的这个 con 步骤 5 涵盖了这个卷积操作以及等式 (10) 的压缩。
在这里插入图片描述

3节点池化

4*边缘池化

不同拓扑之间的知识转移

相同功能的模拟电路可以在不同的设计或拓扑中实现。 例如,OTA 可以有不同的拓扑结构,例如 Cascode OTA 和 Current Mirror OTA。 通常,图的大小和结构在不同的拓扑中是不同的。 通过在一个拓扑上训练 PEA 网络获得的知识可以通过来自目标拓扑的少量额外训练数据进行微调,从而转移到不同的拓扑。 根据算法 1,经过训练的 PEA 网络的 PEA 层由𝑊(𝑙)、𝑊(𝑙)、𝑝𝑜𝑜𝑙、𝑊(𝑙)、𝑒𝑑𝑔𝑒、𝑎(𝑙)和𝑏(𝑙),𝑙,2,.𝑙= ., 𝐿,如果有 𝐿 PEA 层。 这些矩阵和向量的大小由特征数量和从第 1 层开始的节点数量决定,𝑛 (𝑙) ,𝑙 = 1, 2, …, 𝐿。 因此,它们的大小与数据样本大小无关 𝑛 = 𝑛 (0) 只要 𝑛 ⩾ 𝑛 (1) 。 换句话说,相同的模型可以应用于具有 𝑛 ⩾ 𝑛 (1) 的不同拓扑。 第一个 PEA 层中的池化可以将许多不同大小的图转换为 𝑛 (1) 。 这是我们在定制中加入图池的另一个原因。

实验与数据

实验在 Linux 机器上进行,使用 Xeon ® E5-2680 V2 处理器,2.8GHz 频率和 256G 内存。 5.1.1 模型和布局实现。 机器学习模型是用 Python 实现的。 我们在第 4 节中描述的模拟 IC 布局器和路由器是用 C++ 编程的。 表 1 总结了实验中使用的 PEA 网络的配置,其中包含 4 个 PEA 层和 5 个 MLP 层。 我们的工作主要与最近基于 CNN 的模拟性能模型进行比较 [19]。 获得并修改了[19]的源代码以适应我们在实验中的测试用例。

在这里插入图片描述

测试用例和训练数据

测试用例是三种不同拓扑的 OTA(运算跨导放大器)设计:5T OTA、Cascode OTA 和电流镜 OTA。 这些设计采用 ASAP 7nm 工艺技术 [25]。 分别为 5T、Cascode 和 Current Mirror OTA 生成 8108、7758 和 9858 布局解决方案。 每个布局解决方案都经过布线,每个布局的性能通过增益、带宽、单位增益频率和相位裕度进行评估,这些增益是通过寄生参数提取和 SPICE 仿真获得的。 对于每个拓扑,80% 和 20% 的数据样本分别用于训练和测试。 在训练期间看不到任何测试数据。 平均而言,PEA 网络的每个数据样本特征包含 5178 个浮点数。 与 [19] 相同,CNN 模型的每个输入图像的大小为 64 × 64 × 5。CNN 模型 [19] 的一个数据样本的放置图像使用大约 4 倍数据或超过我们的 PEA 网络的输入特征 .

5.2 模拟性能预测结果

机器学习模型的分类性能通过以下基于TP(True Positive)、TN(True Negative)、FP(False Positive)和FN(False Negative)的指标进行评估。 • 召回率,又称 TPR(真阳性率):𝑇𝑃 𝑇𝑃+𝐹𝑁。 • FPR(误报率​​):𝐹𝑃+𝑇𝑁。 𝐹𝑃 • 准确度:𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁。 𝑇𝑃+𝑇𝑁 • 精度:𝑇𝑃+𝐹𝑃。 𝑇𝑃 通过改变分类中的特定阈值,在 TPR(召回)和 FPR 之间进行权衡。 TPR-FPR 权衡曲线通常称为 ROC(接收器操作特征)曲线。 ROC 曲线下面积 (AUROC) 是用于评估整个权衡的整体性能的指标。 AUROC 对于完美模型等于 1,对于随机猜测等于 0.5。
5.2.1 自主学习的结果。 这里的自我维持学习意味着模型在相同的拓扑上进行训练和应用,并且总数据的 80% 用于训练。 测试数据是整个数据的剩余 20%。 我们提出的 PEA 网络与 GAT [21] 的插件使用进行了比较,它是最流行的图神经网络之一,以及 CNN [19],这是最近关于放置解决方案的模拟性能预测的工作。 模型评估针对两种不同的分类公式进行。

(1) 𝑄^𝐼:四个性能指标,Gain、UGF(Unity Gain Frequency)、BW(Bandwidth)和 PM(Phase Margin),由四个不同训练的模型分别分类。 结果是这四个指标的平均值。
(2) 𝑄^𝐼𝐼: 这是分类如果 1 Í4 4 𝑖=1 min( 𝑦𝑖 𝜙𝑖 , 1) < 𝑇,其中𝑦𝑖对应增益、UGF、BW和PM,𝜙𝑖是它们的规格,𝑇是阈值。 这是等式 (18) 的二进制分类版本。 自我持续学习的主要结果如表 2 所示。
在这里插入图片描述
我们的 PEA 网络在准确性、精度和 AUROC 方面都优于以前的工作 [19]。 平均而言,与 [19] 相比,它在 ^𝑄𝐼 和 𝑄^𝐼𝐼 上的 AUROC 分别提高了 16% 和 13%。 对于类似的 FPR,我们的 PEA 网络实现了比 [19] 更好的召回率 (TPR)。 这样的结果表明,像在 PEA 中一样考虑图形结构很重要,而仅考虑像 [19] 这样的布局图像是不够的。 除了少数结果相似的情况外,我们的 PEA 网络在大多数指标中也优于 GAT 的插件使用。 这是确认我们对 GNN 技术进行定制的有效性的证据。
在这里插入图片描述

图 4 绘制了四种不同性能指标的分离 AUROC 结果。我们的 PEA 网络在每个性能指标上都明显优于 CNN [19]。 BW(带宽)是四者中最难分类的,因为它对布局的依赖非常复杂。 我们的 PEA 网络相对于之前的工作 [19] 的优势是这个困难案例中最大的。

5.2.2 迁移学习的结果。

在这里插入图片描述

在表 3 中,我们比较了 ^𝑄𝐼𝐼 分类公式的学习与迁移和不迁移的结果。 迁移意味着从一种拓扑(称为源拓扑)中训练获得的知识可以在另一种拓扑(称为目标拓扑)中重复使用并有所帮助。 第 2 列和第 3 列列出了传输的源拓扑和目标拓扑。 “转移”结果是通过在 S(源)上使用 80% 的数据进行主要训练,在 T(目标)上使用 10% 的数据进行微调,并在 T 上进行预测获得的。请注意,所有这些的数据量 三个电路拓扑相似。在“No Trnsf”中,跳过了 80% 的 S 拓扑数据的训练。 因此,比较将显示从 S 学到的知识是否被带到 T。

表 3 中的结果表明,与没有传输相比,使用 PEA 网络的传输几乎总能提高分类质量。 这证实了我们的 PEA 网络通常可以实现知识转移。 唯一的小例外是 FPR 和精度在从 Current Mirror OTA 到 5T OTA 的传输中略有下降。 对于基于 CNN 的工作 [19],从 Current Mirror OTA 到 Cascode OTA 的传输会导致所有指标的显着下降。 【知识迁移和网络结构有关?
在这里插入图片描述

在图 5 中,我们展示了 𝜌 的效果,它是用于从 Cascode 到 Current Mirror 的“Transfer”和 Current Mirror OTA 的“No Trnsf”训练中使用的目标拓扑(Current Mirror)数据的比率。当 𝜌 较低时 ,对于我们的 PEA 网络和之前的 CNN 方法 [19],迁移的效果都很明显。分类准确度随着 𝜌 的增加而增加。当 𝜌 很大时,迁移的效果会减弱。在图 6 中,用于分类 𝑄^𝐼𝐼 对 Current 的 ROC 曲线 针对不同方法绘制了镜像 OTA。这表明自持学习更好,迁移学习仍有改进空间。几乎所有 PEA 解决方案都主导了基于 CNN 的先前工作 [19]。

5.2.3 模型训练时间。

在自我 - 持续学习,训练一个 PEA 网络大约需要 728 秒,而训练一个 CNN 模型 [19] 大约需要 7263 秒。因此,我们的训练比之前的工作 [19] 快了大约 10 倍。

5.3 模拟布局结果

将机器学习模型引导的性能驱动布局的结果与手动布局和传统的自动方法[7]进行了比较,后者的目标中不包括性能。 测试了基于第 4 节的性能驱动布局的五种变体。 它们由 PEA 𝐹𝑂𝑀 = vs. CNN [19]、SS(自我持续学习)vs.迁移学习以及由方程(17)定义的性能成本 𝑄𝐼和由方程(18)定义的 𝑄𝐼𝐼 的组合指导。 为了捕捉整体电路性能,品质因数 (FOM) 定义为
在这里插入图片描述
其中𝑤𝑖表示权重,𝑦𝑖对应Gain、UFG、BW和PM,𝜙𝑖表示它们的规格。 FOM 的值在 [0, 1] 中,理想情况下为 1。此定义与等式 (17) 和 (18) 中定义的性能成本一致。

三个电路的结果如表 4、5 和 6 所示。对于 Cascode OTA 和 5T OTA,与之前的工作 [7] 和由 基于CNN的模型[19]。 对于 Current Mirror OTA,最好的自动结果来自我们所有的模型和 CNN 自我维持学习。 与之前的工作 [19] 相比,由 PEA 指导的布局的整体优势是显而易见的。 图 7 展示了手动设计和 PEA 网络生成的布局示例。3 对晶体管的对称约束在手动布局和由 PEA 引导的布局中都得到了强制执行。 有 4 个没有对称约束的独立晶体管。 PEA 指导这 4 个晶体管的放置以提高性能,而手动设计将它们对称放置。
在这里插入图片描述
在这里插入图片描述
表7提供了总放置和路由运行时间估计。大约,自动布局,其中放置是由机器学习(PEA/CNN)指导,比手工设计快133倍。

结论

这项工作提出了一种定制的 GNN 方法,称为 PEA 网络,用于预测布局解决方案的模拟电路性能。 它优于最近基于 CNN 在准确性、知识转移和训练时间方面的工作。 它还优于 GAT 的插件使用,GAT 是最有影响力的 GNN 技术之一。 PEA 引导布局的布局后电路性能优于 CNN 引导布局。 我们的布局实现了类似于手动设计的性能,但速度快了两个数量级。 在未来的研究中,我们将进一步提高知识传递能力,探索OTA之外不同类型电路之间的传递。

关注

  1. 该方法只针对OTA 但是在上篇论文中 将其放到了很多电路中引导布局。
  2. 知识迁移 和 网络结构有关?PEA结构比CNN结构更适合知识迁移?
  3. 传统布局 [7] 就是同时布局那个!!!
  4. 图形注意网络 (GAT) [21]
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值