目录
在数字信号处理和离散时间的控制理论中,双线性变换(Tustin变换)被用来在连续时间系统与离散时间系统做转换。
双线性变换的概念
双线性变换是一种特别的共形映射(即莫比乌斯变换,又称保形变换),常被用来将线性非时变系统滤波器在连续时域的传递函数转换成线性且平移不变滤波器在离散时域的传递函数。将s平面中位置在轴的点映射到复平面上的单位圆
。其他的应用还有扭曲任何的离散时间线性系统的频率响应(例如用来估计人类听觉系统的非线性频率清晰度)或是被用在离散域以取代一个系统经过一阶全通滤波器的单位延迟。
这种变换保有稳定性且将连续时间滤波器的频率响应中每一点映射到离散时间滤波器的频率响应中所对应的点,虽然频率会有点不同,这部分会在之后的频率扭曲中解释。对于模拟滤波器的频率响应中所看到的特征,在数字滤波器的频率响应中都有相同增益和相位平移的对应特征,虽然频率可能有点不同,在低频时很难观察到但在频率接近Nyquist频率时就相当明显。
双线性变换表达式
双线性变换是自然对数函数的一阶估计法,也就是将z平面映射到s平面,当拉普拉斯变换被用在离散时间信号上(将离散时间串行中的每个元素附在对应的延迟狄拉克函数),其结果确实为将离散时间串行的Z变换替代成:
其中T是用在推导双线性变换的梯形公式中数值积分每阶的大小,换句话说就是采样间距。上式中分子和分母与s都是线性关系,所以这个式子就叫双线性变换。上述的双线性估计可以透过s来解或是产生一个近似估计。
逆映射则为:
双线性变换的本质是使用这种一阶估计法且将连续时间传递函数中s替换成:
也就是说:
保留稳定性及最小相位性质
如果有一个连续时间且有因果性的滤波器,其传递函数的极点落在复数s平面的左半边,此滤波器则为稳定的。如果有一个离散时间且有因果性的滤波器,其传递函数的极点落在复数z平面的单位圆内,此滤波器则为稳定的。双线性变换将复数s平面的左半边映射到复数z平面的单位圆内,因此稳定的连续时间滤波器被转变成离散时间滤波器后也保有稳定性。
另外是一个任意正常数,用来把模拟频率映射到数字频率。在高通或低通滤波器中,其通常用来使模拟和数字之间的截止频率等同。根据上面关系可知s域负半轴平面与z域中的单位圆内相对应。
将和
(T为采样间隔)代入双线性变换公式可以得到:
当模拟域的截止频率时,常数c:
上式中的为数字滤波器的截止频率。
防混叠性质
另外双线性变换可以防止频谱的混叠:
可以得到:
可以写出上式的逆变换:
上式中是数字角频率,
是模拟角频率。
可以将上式画出相应的曲线:
可以看出所有的模拟角频率都被压缩到之中,但是却依然能保持单值对应,虽然消灭了频谱混叠,但是由于这个出发点是在原点进行泰勒展开做近似的,最后的频谱会存在一定的失真。