【笔记】行测——逻辑判断总结与归纳

文章目录


逻辑判断

一、翻译推理

1.充分条件假言命题

  • 关键词:“如果……那么……”
    • 如果A那么B => A → B
  • 翻译口诀:如果就,前推后
  • 识别替代关联词
    • 如果(只要/倘若)A,那么(则/就/一定/必须)B
    • 为了(想要)A,一定(必须)B
    • 凡是(所有)A,都B
    • A离不开B
    • A是B的充分条件

注意关键词的省略

  • 省略部分:明天天气晴朗就去旅游。=> 明天天气晴朗 → 去旅游
  • 全部省略:热爱生活的人懂得感恩。=> 热爱生活 → 懂得感恩

2.必要条件假言命题

  • 关键词:“只有……才……”
    • 只有A才B => B → A
  • 翻译口诀:只有才,后推前
  • 识别替代关联词
    • 不A,不B。
    • 除非A,否则不B。
    • A是B必不可少的(必须的/的必要条件/的前提假设/必备的/的基础……)

极易混。。。
注意关键词的省略

  • 省略部分:(除非)买玩具,否则哭。=> ¬ \neg ¬哭 → 买玩具
  • 全部省略:热爱生活的人懂得感恩。=> 热爱生活 → 懂得感恩

使用诀窍:必须的为条件,非必须的为结论

3.推理规则:逆否推理

表现形式:

  • 肯前必肯后:A→B为真,肯定A,一定能够推出B;
  • 否后必否前:A→B为真,否定B,一定能够推出否定A;
  • 否前则后不一定:A→B为真,否定A,不一定能够推出B;(易错)
  • 肯后则前不一定:A→B为真,肯定B,不一定能够推出A;(易错)

4.递推推理规则

递推推理

A→B,B→C => A→C

逆否传递

A→C => ¬ \neg ¬C → ¬ \neg ¬A

5.归谬推理规则

自相矛盾

A→ ¬ \neg ¬A, ∴ \therefore ¬ \neg ¬A

结论自相矛盾

A→B,A→ ¬ \neg ¬B, ∴ \therefore ¬ \neg ¬A

条件自相矛盾

A→B, ¬ \neg ¬A→B, ∴ \therefore B

例:你见或不见,我就在那里

6.联言命题

全真则真,一假则假
B&C&D&……→A => ¬ \neg ¬B| ¬ \neg ¬C| ¬ \neg ¬D|……→ ¬ \neg ¬A
常见关联词:

  • ……而且/并且/也/又/和……
  • 既……又……
  • 不但……而且……
  • 不仅……还……
  • 虽然……但是……

7.选言命题

相容选言命题

全假则假,一真则真
B|C|D|……→A => ¬ \neg ¬B& ¬ \neg ¬C& ¬ \neg ¬D&……→ ¬ \neg ¬A
常见关联词:

  • ……中至少一个/不都
互斥选言命题

一真一假为真,全真全假为假
要么A要么B

8.摩尔定律

¬ \neg ¬(A & B)= ¬ \neg ¬A | ¬ \neg ¬B
¬ \neg ¬(A | B)= ¬ \neg ¬A & ¬ \neg ¬B

二、集合推理

1.六个基本

六个基本性质命题

  • 所有S都是P
  • 所有S都不是P
  • 有的S是P
  • 有的S不是P
  • 某个S是P
  • 某个S不是P

2.三个换位

  • 所有S都是P => 有的P是S
  • 所有S都不是P => 所有P都不是S
  • 有的S是P => 有的P是S

3.两组推理

  • 所有S都是P => 某个S是P => 有的S是P
  • 所有S都不是P => 某个S不是P => 有的S不是P

4.两个递推

  • 所有S都是P => 所有P都是R => 所有S都是R
  • 有的S是P => 所有P都是R => 有的S是R

三、模态推理

1.模态命题的对当关系

(1)矛盾关系
  • 必然A 与 可能不A
  • 必然不A 与 可能A

利用矛盾关系的推理:

  • 必然A为真,可判可能不A为假
  • 必然不A为真,可判可能A为假
(2)反对关系
  • 必然A 与 必然不A
  • 可能A 与 可能不A

利用反对关系的推理:

  • 必然A为真,可判必然不A为假
  • 必然A为假,则必然不A真假不定
  • 可能A为真,则可能不A为真假不定
  • 可能A为假,可判可能不A为真

可能事件被推翻,则说明该事件没有这个可能性,即该事件一定不会发生

2.与集合命题结合考察

四、真假推理

1.矛盾关系

另个命题相互矛盾,必有一真一假

例:两个球,一黑一白,任取一球,必黑必白,必有一真一假。

2.反对关系

  • 两个所有(必然),可以同假,必有一假

例:三个球,一黑一白一红,任取一球,必黑必白,可以同假,必有一假。

  • 任两有的(可能),可以同真,必有一真

例:三个球,一黑一白一红,任取一球,可黑可白可红,可以同真,必有一真。
相对“必然”来说,“可能”不好判断,以这个例子,再加个条件,可红为假,那么可黑可白,可以同真,必有一真。

3.包容关系

任两项:一真前假,一假后真

  • S且P => S(P)=> S或P
  • 所有S都是P => 某个S是P => 有的S是P
  • 所有S都不是P => 某个S不是P => 有的S不是P
  • S必然是P => S是P => S可能是P
  • S必然不是P => S不是P => S可能不是P

4.全同关系

任两项:一真全真,一假全假

例:两个球,一黑一白,任取一球,必黑必不白,必有一真全真一假全假。

5.没有关系

两个命题没有关系,互不干扰

五、分析推理

1.优先排除法

2.最大信息法

3.确定信息法

例题:
有红、蓝、黄、白、紫五种颜色的皮球,分别装在五个盒子里。甲、乙、丙、丁、戊五人猜测盒子里皮球的颜色。甲:第二盒是紫的,第三盒是黄的。乙:第二盒是蓝的,第四盒是红的。丙:第一盒是红的,第五盒是白的。丁:第三盒是蓝的,第四盒是白的。戊:第二盒是黄的,第五盒是紫的。猜完之后打开盒子发现,每人都只猜对了一种,并且每盒都有一个人猜对。 由此可以推断:
A.第一个盒子内的皮球是蓝色的
B.第三个盒子内的皮球不是黄色的
C.第四个盒子内的皮球是白色的
D.第五个盒子内的皮球是红色的
【答案】C
【解析】
根据题目描述可以画出图表如下:

1
2
3
4
5
由“每人都只猜对了一种,并且每盒都有一个人猜对”可知:
1红,∴5非白(丙)
∴4非红2蓝(乙)5紫2非黄(戊)4白3非蓝(丁)
∴3黄

4.选项代入法

5.假设条件法

6.列表法

分析推理题目中最难是 “没有具体推理结果,判断可能性” 的题目。如下:


题目1:
根据天气预报,这周只有三种天气,分别是晴天、雨天和多云天。现在已知:

  • (1)今天是周四,晴天;
  • (2)周一没有下雨;
  • (3)明天是多云天;
  • (4)明天以后要么是雨天,要么是多云天;
  • (5)这周有三天是晴天。

那么,以下推断错误的是( )。
A.为了避免被雨淋湿,这周最多只有三天需要带雨伞出门
B.如果周六和周日天气不相同,这周最多有三天是多云天
C.周二和周三天气不可能相同
D.如果周二是多云天,则周一是晴天
【答案】:C
【解析】由条件(1)(3)(4)可知:周四晴天,周五多云天,周六、周日非晴天。由条件(1)(5)可知:周一非雨天,周一至周三有两天是晴天。根据题干列表:

周一周二周三周四周五周六周日
晴天×××
雨天×××
多云×
可推出如下明确限制:
  • 周一、周二、周三中必有两天是晴天
  • A项:根据周四晴天,周五多云天,周一至周三有两天是晴天,推出有四天一定不会下雨,所以最多三天需要带伞出门,A选项可以推出;
  • B 项:周六和周日天气不同,所以周六周日有一天是多云天。周一至周三有两天是晴天,所以另外一天可能是多云天。周五是多云天,所以这周最多有三天是多云天,B选项可以推出;
  • C项:根据周一非雨天,周一至周三有两天是晴天,可知存在周一是多云天,周二和周三都是晴天这种可能,C项错误;
  • D项:根据周一非雨天,周一至周三有两天是晴天,如果周二是多云天,那么周一、周三一定是晴天,D选项可以推出。

本题为选非题,故正确答案为C。


题目2:
甲、乙、丙、丁、戊5人近期均到一座大型购物美食广场打工。她们打工的商家有家用电器店、服装店、药店、馄饨店、拉面馆,每人各去一家。每人开始打工的时间各不一样,分别是去年的3月、4月、5月、6月、7月。已知: (1)甲是厨师,她在一家小吃店顺利找到工作; (2)乙去了服装店,但她开始打工的时间比甲晚3个月; (3)丙与去家用电器店打工的人是同乡,5人中她开始打工的时间最晚; (4)丁比戊开始打工的时间早,她去的是药店。 根据以上信息,可以得出以下哪项?( )
A:3月份甲开始到馄饨店打工
B:5月份戊开始到家用电器店打工
C:6月份丁开始到药店打工
D:7月份丙开始到拉面馆打工
【答案】:B
本题考查分析推理。 题干内容可以简化整理为:(1)甲,馄饨店或拉面馆;(2)乙,服装店,比甲晚3个月;(3)丙不去家用电器店,7月;(4)丁,药店,早于戊。 根据条件(2)可知,甲和乙去打工的时间,要么是3月和6月,要么是4月和7月,结合条件(3)丙最晚为7月,得出甲在3月,乙在6月,结合条件(4)丁早于戊,那么丁只能在4月,戊在5月; 已确定信息为:乙在服装店,丁在药店,甲在馄饨店或者拉面馆,同样的根据条件3可知,丙不在家用电器,只能在馄炖店或者拉面馆中的一个,家用电器的只能是戊。
故本题答案为B选项。


题目3:
根据所给材料,回答1~5题。
某办公室有王莉、李明和丁勇3名工作人员,本周有分别涉及网络、财务、管理、人事和教育的5项工作需要他们完成。关于任务安排,需要满足下列条件:
①每人均需至少完成其中的一项工作,一项工作只能由一人完成;
②人事和管理工作都不是由王莉完成的;
③如果人事工作由丁勇完成,那么财务工作由李明完成;
④完成教育工作的人至少还需完成一项其他工作。
到了周末,3人顺利地完成了上述5项工作。
1.以下哪项的工作安排符合上述条件?
A.王莉:管理、网络;李明:教育、人事;丁勇:财务
B.王莉:教育、财务;李明:人事、管理;丁勇:网络
C.王莉:网络;李明:人事、管理、财务;丁勇:教育
D.王莉:网络;李明:教育、管理;丁勇:人事、财务
解析:排除法。A项不符合②,排除;B项符合题干条件;C项不符合④,排除;D项不符合③,排除,故本题选B
2.如果李明只完成五项工作中的一项,那么包括该工作的所有可能性是以下哪项?
A.人事、财务
B.人事、管理、财务
C.人事、网络
D.财务
解析:假设法。若李明只完成人事或财务工作,跟题干并无矛盾。若李明只完成管理或网络工作,结合②可知,人事工作肯定要由丁勇完成,再根据③,李明还需完成财务工作,与题干矛盾。故本题选A。
3.以下哪项中的任务不可能均由李明完成?
A.教育、人事、财务
B.教育、人事、网络
C.教育、管理、财务
D.教育、管理、网络
解析:代入法。代入A、B、C三项均符合题意。代入D项,结合①和②可知,人事工作由丁勇完成,财务工作由王莉完成,与③矛盾。故本题选D。
4.以下哪项中的任务不可能均由丁勇完成?
A.财务、管理
B.网络、人事
C.管理、人事
D.教育、管理
解析:代入法。代入A项符合题意。代入B项,结合②和③可知,财务和管理工作由李明完成,王莉只完成教育一项工作,与④矛盾。代入C、D两项也不存在矛盾。故本题选B
5.如果管理工作和网络工作是由同一个人完成的,则以下哪项是可能的?
A.教育工作是由李明完成的
B.财务工作是由丁勇完成的
C.管理工作是由李明完成的
D.人事工作是由丁勇完成的
解析:假设法。假设A项正确,可推出王莉完成财务工作,李明完成教育和人事工作,丁勇完成管理和网络工作,符合题意。假设B项正确,根据条件,王莉只完成教育一项工作,与④矛盾。假设C项正确,管理和网络工作由李明完成,则人事工作只能由丁勇负责,根据③可知李明还负责财务工作,则王莉只能负责教育一项工作,与④矛盾。假设D项正确,人事工作由丁勇完成,则财务工作由李明完成,王莉只能完成教育一项工作,与④矛盾。故本题选A。
话外之音:这道题当年相当出名。。。

六、归纳推理

(一)主题一致原则

摘出主题客体,排除不相干选项,预防一下几点:

  • 主体客体偷换
  • 逻辑关系偷换

(二)现在原则

拒绝脑补,拒绝推断过度

(三)从弱原则

两个不确定选项,优先选择非绝对项

(四)整体优先原则

两个描述都正确的选项,选择概括性强的一项

七、原因解释

(一)优选原则

涉及双方优选,设计单方次选,无关选项不选

(二)排除干扰项

否定矛盾的不选

八、论证基础内容

论证要素:

  • 论点:文段核心,鲜明准确,非模棱两可
  • 论据:用来证明论点
    • 事实论据
    • 理论论据
  • 论证方式:抽象、隐性的,是论证的基本形式

论点定位:

  • 根据提问方式定位
  • 首尾句原则
  • 关键词法
    • 表观点:认为、以为、观点是……
    • 表结果:因此、所以……
    • 表结论:表明、说明、结果是……
    • 表建议:建议、忠告……
    • 表推论:看来、推测、估计……

解题原则:

  • 话题一致原则
  • 论据有效原则

题型分类:

  • 加强支持类:以下哪项为真,最能加强/支持上述观点?
  • 前提假设类:上述陈述隐含着下列哪项前提或假设?
  • 削弱质疑类:以下哪项为真,最能削弱/质疑上述观点?

(一)加强支持类的解题技巧

1.建立联系

论点和论据之间存在些许断层,需要在论点和论据之间建立必然联系

2.加强论点

加强论点的选项有如下两种特征:

  • 肯定论点
  • 解释论点
3.加强论据

加强论据的选项有如下两种特征:

  • 对原有论据肯定
  • 增加新的论据

(二)前提假设类的解题技巧

1.建立联系

论点和论据之间存在些许断层,需要在论点和论据之间建立必然联系

2.补充论点成立的必要条件

常用否定代入法,否定这个前提看论证结构是否可以推翻。

(三)削弱质疑类的解题技巧

1.切断联系

表明论据与论点之间没有关系,对论证结构进行否定

2.削弱论点

削弱论点的选项有如下两种特征:

  • 否定论点
  • 解释论点
3.削弱论据

削弱论据的选项有如下两种特征:

  • 对原有论据否定
  • 反向增加论据

(四)关于不能

常见提问方式:

  • 以下哪项如果为真,最能支持上述论证?
  • 以下哪项如果为真,最能有力地削弱上述观点?
  • 以下哪项如果为真,不能支持上述论证?
  • 以下哪项如果为真,不能削弱上述观点?
1.不能加强

首选无关项,其次是可削弱项

2.不能削弱

首选无关项,其次是可加强项

重点是审题,注意否定字眼
注意尽可能标出
拒绝脑补、拒绝先入为主,只需根据字面去判断

九、论证提升内容

(一)单论点的加强与削弱

1.加强支持
  • 加强论点
  • 加强论据
2.削弱质疑
  • 否定论点
  • 反向增加论据

(二)正反论点的加强与削弱

1.加强支持
  • 加强论点
  • 加强论据
2.削弱质疑
  • 否定论点
  • 反向增加论据

(三)不同类型论据的加强与削弱

1.对比实验类
  • 加强支持:突出变量唯一
  • 削弱质疑:强调变量不唯一
2.类比实验类
  • 加强支持:增加两类事物对象之间的相似性
  • 削弱质疑:减少两类事物对象之间的相似性
3.统计论证
(1)抽样统计

通过抽取样本小群体的分析,得到整体的结论

  • 加强支持:抽取样本典型,可以代表整体
  • 削弱质疑:抽取样本不典型,不可以代表整体
(2)对数据直接分析

论证结构为:根据论据中所给出的样本调查的具体数据,直接得出结论。数据为百分比或绝对值(称之为指标量),而结论中的数据范围会扩大(称之为基数量)

4.因果论证

在论点中,有原因有结果,重点强调因果关系

(1)加强支持

加强因果之间的联系:

  • 排除他因:除论点中提到的原因,再无其他能导致此结果的原因
  • 反向对比:没有论点中所提原因的化,结果不会产生
(2)削弱质疑
  • 直接否定论点
  • 因果倒置
  • 另有他因
  • 反向对比:无因也有果、有因反无果
5.形式论证

论证结构或是论点以形式推理的表达方式呈现。

  • 论点的表达方式为形式推理的结构
    • 加强支持:形式推理中的等价命题
    • 削弱质疑:形式推理中的矛盾命题
  • 论据和论点表达两件事,选项中使用形式推理的方式来建立联系(注意因果倒置)

(四)强弱力度比较

1.选项形式区分
  • 加强的力度对比:建立联系>加强论点/论据
  • 削弱的力度对比:切断联系>削弱论点/论据
2.语义力度区分
(1)理论强于例证
(2)直接强于间接

(五)排除干扰项

1.诉诸无知

相对论点而言,类似以下表述属于不明确的、无关的选项:

  • 没有实际数据说明,不能证明的
2.诉诸权威

类似某专家说的,如果专家表述的是个人观点,没有数据或是事实依据的,起不到任何加强

3.典籍、法律、规定类

常见表达为:

  • 法律规定
  • 有制度规定
  • 有史书记载
    遇到此类选项要慎重对待
4.罗列困难类

论点中表达要做某件事,而选项中表述做这件事会有许多困难,或是陈述这件事的执行难度,这类选项针对论点而言属于无关项,起不到加强或削弱的作用。

十、评价结构

常见提问方式:

  • 下列哪一项与上文的论证方式是相同的?
  • 以下选项中推理和题干最为相似的是?
  • 以下选项中与题干推理形式相同的是?
  • 以下选项与上述推理结构最为相似的是?

(一)形式推理的结构比较

1.否前推否后
2.肯前推肯后
3.否后推否前
4.肯后推肯前

(二)论证的结构比较

1.归纳推理
  • 不完全归纳推理:部分推整体
  • 完全归纳推理:全部推整体
2.演绎推理

一般的、普遍的知识推个别知识结论的推理过程。

3.类比推理

根据两个或两类事物在某种属性上相同,推测他们其他属性也可能相同。

(三)谬误评价

1.偷换概念
2.自相矛盾
FPGA自学笔记——设计验证JMB FPGA(可编程逻辑门阵列)是一种可编程的硬件平台,可以实现各种数字电路的设计验证。本文将简要介绍使用FPGA自学设计验证JMB(低功耗、高效能、集成度高的多媒体芯片)的过程。 首先,我们需要了解JMB的功能和特性。JMB是一种面向多媒体应用的芯片,具备低功耗、高效能和高集成度的优势。我们需要详细研究JMB的硬件架构和内部模块,包括处理器核、存储器模块、图像和音频处理模块等。 接下来,我们可以使用FPGA开发板来设计和验证JMB。首先,我们需要熟悉FPGA设计工具,例如Vivado或Quartus等。这些工具提供了图形化界面和硬件描述语言(HDL)等设计方法。我们可以使用HDL编写JMB的功能模块,并将其综合为FPGA可执行的位流文件。 在设计完成后,我们需要验证JMB的功能和性能。我们可以使用仿真工具(例如ModelSim或ISE Simulator)来模拟JMB在不同情况下的行为。通过设计测试程序并运行仿真,我们可以验证JMB的各个模块是否正确地工作,是否满足设计要求。 在验证完成后,我们可以将位流文件下载到FPGA开发板中进行智能芯片的物理实现和测试。通过外部设备的连接以及相关测试程序的运行,我们可以验证JMB在实际硬件中的功能和性能。 总结起来,学习FPGA设计验证JMB,我们需要熟悉JMB的硬件架构和内部模块,并使用FPGA开发工具进行设计验证。通过仿真和物理实现测试,我们可以验证JMB的功能和性能。这些过程需要理论知识和实践经验的结合,希望这些笔记能够给你提供一些参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序边界

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值