道格拉斯普克算法(DP)的点云轮廓线简化

本文介绍了道格拉斯-普克算法在点云轮廓线简化中的应用。通过该算法,可以有效减少点云数据中的冗余点,从而得到简洁的轮廓线。文章详细阐述了DP算法的原理,包括从点云数据中提取边缘点,构造二叉树,遍历并确定关键节点的过程。并展示了程序的编程思想和测试验证,证明算法的有效性和实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、背景介绍

       由于点云无法精确刻画目标对象边缘信息,因此常规提取的边缘点直接相连所生成的轮廓线,锯齿现象显著,与真实情况相差甚远(图b所示)。

      道格拉斯-普克(Douglas-Peuker)抽稀算法是用来对大量冗余的图形数据点进行压缩以提取必要的数据点。利用DP算法实现的轮廓线简化结果,如图c,其真实反应了点云形状。因此,在实际点云三维重建中,DP算法常用于点云简化,进而用于后续三维重建。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云实验室lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值