vice versa
通常翻译为反之亦然
。那这个反之亦然
所表达的含义是怎样的呢?
我们以一阶逻辑谓词逻辑
来解释其含义。
假设存在命题
A
→
B
A \rightarrow B
A→B,反之亦然
的含义就相当于该命题的逆否命题,即
¬
B
→
¬
A
^\neg B \rightarrow ^\neg A
¬B→¬A。
以一个具体的例子来理解其含义:
A lower score of
g
(
h
,
r
,
t
)
g(h,r,t)
g(h,r,t) suggests that the triplet is more likely to be true, and vice versa.
其中
g
(
h
,
r
,
t
)
g(h, r, t)
g(h,r,t)定义为:
g
(
h
,
r
,
t
)
=
∣
∣
W
r
e
h
+
e
r
−
W
r
e
t
∣
∣
2
2
g(h, r, t) = \left|\left| W_re_h + e_r -W_re_t \right|\right|_2^2
g(h,r,t)=∣∣Wreh+er−Wret∣∣22
这句话中文意思是:
一个
g
(
h
,
r
,
t
)
g(h, r, t)
g(h,r,t)更低的得分表明三元组
(
h
,
r
,
t
)
(h, r, t)
(h,r,t)更可能是真实的,反之亦然。
我们将一个
g
(
h
,
r
,
t
)
g(h, r, t)
g(h,r,t)更低的得分记作
A
A
A, 三元组
(
h
,
r
,
t
)
(h, r, t)
(h,r,t)更可能是真实的记作
B
B
B,于是原命题就有:
A
→
B
A \rightarrow B
A→B
反之亦然
即可将该命题变为:
¬
B
→
¬
A
^\neg B \rightarrow ^\neg A
¬B→¬A
即:
如果三元组
(
h
,
r
,
t
)
(h, r, t)
(h,r,t)不真实,则
g
(
h
,
r
,
t
)
g(h, r, t)
g(h,r,t)不会更低,即
g
(
h
,
r
,
t
)
g(h, r, t)
g(h,r,t)会更高。