边缘化采样一致性
摘要
本文提出了一种称为阈值一致性(σ-consensus)的方法,以消除RANSAC中人为设定内点阈值的需求。该方法边缘化噪声,而不是估计噪声σ。该方法通过加权最小二乘法,求解最优模型,而最小二乘法的权重由数据为内点的边缘概率确定。本文提出了一种新的评估模型的质量函数,由于该函数不需要使用变量σ,因此也就不需要确定内点集,以评估模型的质量。同时,本文也提出了一种新的基于边缘化的迭代停止条件。通过采用阈值一致性,MAGSAC不需要人为定义内点阈值,且能显著提高鲁棒估计的精度。该方法在对极几何和单应矩阵的估计问题上,在公共数据集的测试中,几何估计的精度高于当前最优的算法。另外,如果把阈值一致性估计方法作为后处理的方法,应用在RANSAC中,即使仅仅使用一次,也能在很多视觉问题上明显提高估计的精度,同时也不会增加很多的计算量。本文的源码https://github.com/danini/magsac。
主要贡献
本文的主要贡献为:
1、提出了一种阈值一致性算法,该算法不在需要人为设定内点阈值,而仅仅需要知道内点阈值的最大可能值;
2、提出了一种新的模型质量评估函数,由于该函数与内点阈值无关,因此不必求解内点集以评估模型;
3、提出了一种新的迭代终止条件,以适配本文的估计方法。
算法流程
PS:本文要解决的问题是,传统的RANSAC方法,通常需要人为设定一个内点阈值,以求取一个内点集,进而对模型的质量进行评估,因此内点阈值会很大程度影响模型的评估,进而影响算法估计的精度。本文的做法是:将内点的阈值σ看作一个随机变量,由于模型的质量评估函数Q是关于σ的函数,因此Q也可以看作是一个随机变量,我们通过求解Q的期望,能够获取模型质量的平均值Q*,而求解该期望的过程,就是边缘化掉σ的过程。另一方面,当我们求解得到一个模型,通常我们会使用内点集中所有点,对模型进行一个优化(通常称为“局部优化”),但是在本文的方法中,由于不存在内点阈值σ,因此也就无法判断一个点是否为内点,亦即无法得到内点集,本文采取的做法是

本文提出了一种名为阈值一致性(σ-consensus)的方法,用于消除RANSAC算法中内点阈值的人为设定需求。该方法通过边缘化噪声而非估计噪声σ,采用加权最小二乘法求解最优模型,权重由数据点为内点的概率决定。此外,提出了一种新的模型质量评估函数和迭代停止条件,显著提高了鲁棒估计的精度。
最低0.47元/天 解锁文章

1072

被折叠的 条评论
为什么被折叠?



