现阶段各家公司的广告算法使用的主流模型有哪些?

工业界模型综述

下面介绍一些模型,选取标准是:

  • 由工业界提出的实战模型
  • 经发表即引发大量关注的”明星模型“
  • 经过工业界考验,大家普遍认可的

文中提到的模型基本都是召回和排序的模型,计算广告领域的其他业务,如定价、匹配、流量分发等等,用到的技术会有区别。大体上来讲,神经网络大体有如下几个山头(并不严格正交):

DNN / Wide and Deep / 加入Attention 的 model / Multi-task 的 model

具体地,现在主流使用的模型和方法包括(部分久经考验、不需介绍的经典模型省略介绍):

  • 传统机器学习模型:

    • LR:机器学习经典模型,详略。
    • FM、FFM:机器学习经典模型,详略。
    • GBDT+LR[1]:GBDT+LR是小公司、少数据、和对DNN有畏惧心理的公司和业务中应用最广泛的模型。它的非线性不需要人手工构造,由树模型学到,降低了特征工程的复杂度。模型结构简洁,加上近几年树模型开发充分,拥有xgboost和lightgbm这样训练速度和精度都惊人的工具,所以训练成本极低,是很强的baseline。
  • 深度学习模型:

  • 纯DNN模型:DNN在CNN制霸ImageNet后,就不断有NN在排序模型的尝试,在Google放出自己youtube的排序模型是纯粹的DNN[2]之前,DNN就已经成为主流了,这篇工作放出来后,就更少有人和神经网络过不去了。

    Youtube DNN(2016),简单的vector pooling加上手工特征工程concat直接送入DNN,是大多数工业界早期尝试DNN的通用做法

  • 双塔系列模型:

    • DSSM及变种[3][4]:DSSM模型是微软发表的一篇工作,本用于语义匹配,后被移植至排序模型–这个intuition是很自然的,毕竟语义匹配本质上也是一类排序问题。双塔模型的最大特点就是user和item是独立的两个子网络,对工业界十分友好,两个塔可以各自缓存,线上infer只需要取出缓存做有限的运算即可。

      朴素的DSSM双塔模型(2015),每个塔互相独立,可各自缓存
  • Wide and Deep 系列模型[5]:
    Wide and Deep及后续的模型家族是现在业界应用最广泛的深度学习模型,其主要原因在于模型结构就融合了传统机器学习模型和DNN,从而能够既有LR的记忆性,又有DNN的泛化性,加上模型复杂度加强,其上限是远高于LR的。对于有DNN PTSD的人来说,有一个LR在模型中,也显得可靠许多。

    • Wide and Deep[5]:原始WDL,Deep部分是DNN,Wide部分是LR,WDL的开山之作,这篇文章和工作给后面的研究者非常大的启发,即机器学习和深度学习是可以在一个模型中共存,从而可以同时吸收两者的优势,后面的诸多工作灵感和原形皆出于此。

      Wide and Deep(2016),清晰明了的模型图。有一说一,Google的网络结构图都画得很漂亮
  • DeepFM[6]:源自Wide and Deep,Wide端改成FM。以此文引申出去,在wide和deep两端各可做任意的修改,以达到增加模型拟合能力和自动特征工程能力的目的。

  • Deep Interest Network(DIN)[7]:阿里妈妈的工作,是Attention风行以来较热门的一篇,简单地说,把DNN中的sum pooling/mean pooling的工作换成了自己的Attention实现。

  • 其他:下面罗列一些思想值得借鉴,但因种种原因尚未广泛被采纳的模型

    • Deep Cross Network(DCN)[8]:我很喜欢这篇文章的创意,源自Wide and Deep,deep端引入了类似resnet的残差结构,以及无限的特征交叉,带来了理论上任意高阶的特征交叉能力,但工作本身算不上经典,故不放图了,有兴趣可去参考文献自寻。
    • Deep Interest Evolution Network(DIEN)[9]:阿里妈妈在DIN上的后续工作把DIN中的attention + sum pooling部分换成了sequential model + attention,然而一个问题是,RNN是不能并行的,且参数量巨大的,所以截止2019年底,几乎所有的RNN based paper都沦为paper work,并没有大规模上线的能力,故不放图。
    • BST[10]:阿里手淘工作,Transformer 引入 recsys,详略。
    • 强化学习模型:强化学习是不好评价的,在强化学习的一些工作中,我们无法明确,究竟是模型起了作用,还是精心构造的reward起了作用,更多的工作甚至无法说服自己满足MDP的基本假设。
      • Youtube的强化学习(2019)[11]:号称youtube近年最大提升,使用强化学习,网络结构十分简单。在bilibili上有youtube相关人员的分享,可以参考:https://www.bilibili.com/video/av47720781/,但是建议思考一下为什么Youtube的交互场景能够使用强化学习,自己的场景是否能够使用强化学习?
        以上模型和工作,如果让我只挑选最经典的话,我选择:GBDT+LRDSSMWide and Deep这三篇。对工业界而言,这三个模型依次适用于从小到大的业务规模。

阿里巴巴

淘宝线上搜索推荐算法:LR, XGBoost已经是很简单的Baseline了,不管线上线下都可以非常快的做一个初步验证。Wide & Deep model,DeepFM之类的,经典但是也比较老了。具体模型还是根据业务场景来的。主搜那边一些DIN,DIEN都是阿里最新提出的一些深度模型。除了主搜,淘宝还有各种各样的业务场景。比如,淘宝首页的Internt Recommendation,去年上了2个基于GNN的方法(MEIRec和IntentGC)。大公司的算法模型发展是很快的紧跟最新的学术前沿,一方面很多算法研究人员的不断尝试迭代,另一方面会招很多Research Intern一起合作发论文。

持续更新

<think>好的,用户想要了解国内各家公司的AI大模型排名。首先,我需要确定用户的需求是什么。他们可能是在做市场调研,或者在选择合作伙伴,也可能是学术研究。不管怎样,用户需要的是一个综合的排名,涵盖主要公司和他们的模型。 接下来,我需要回忆国内有哪些主要的公司推出了大模型。百度、阿里、腾讯、华为这些大厂肯定有。然后是字节跳动、科大讯飞、商汤科技、智谱AI、MiniMax、零一万物等。可能还有一些初创公司,但用户可能更关注知名度高的。 然后,排名的依据是什么?通常包括技术能力、应用场景、商业化程度、开源情况、创新能力等。但用户可能想要一个综合的排名,而不是分项评估。不过直接说排名可能有主观性,需要说明这一点。 我需要先列出每个公司模型,比如百度的文心一言,阿里的通义千问,腾讯的混元,华为的盘古,字节的云雀,讯飞的星火,商汤的日日新,智谱的GLM,MiniMax的ABAB,零一万物的Yi系列,还有百川智能和深度求索的模型。 接下来,按什么顺序排列?可能需要根据技术实力、市场影响力、应用范围来排序。百度、阿里、腾讯、华为这些大厂可能在前列,但讯飞、商汤这些专注于AI的公司也有竞争力。字节作为新入局的,但资源多,可能排名也不低。另外,像智谱AI这样的初创公司,虽然成立时间不长,但技术上有亮点,比如GLM-4。 需要注意的是,排名可能因评价标准不同而变化,比如有的模型在特定领域表现好,有的在商业化上更成功。此外,开源模型和闭源模型也有区别,比如百川和深度求索的开源模型可能在开发者中更受欢迎。 还要考虑最新动态,比如最近几个月有没有新模型发布,或者性能提升。比如讯飞的星火大模型3.5可能在某些评测中表现不错,而华为的盘古强调B端应用,可能在企业级市场有优势。 另外,用户可能想知道这些模型的特点,比如多模态能力、参数规模、应用场景等。所以在介绍每个公司时,需要简要说明其模型的特色和优势。 可能还需要提到政策和数据安全的影响,国内模型更注重中文环境和本土化需求,这也是一个优势点。 最后,要避免绝对化的排名,而是给出一个分档,比如第一梯队、第二梯队,或者按领域划分,这样更客观。同时提醒读者排名是动态变化的,可能存在主观因素,建议参考第三方评测。 总结一下,我的回答结构应该是:先说明排名的主观性和动态性,然后分公司介绍其模型和特点,最后给出一个分档排名,并建议参考具体需求选择模型。</think>国内AI大模型的竞争格局目前处于快速发展阶段,各家公司在技术能力、应用场景和商业化进展上各有侧重。由于评价标准不同(如技术性能、生态布局、行业影响力等),以下排名综合了技术实力、市场声量及实际应用情况,仅供参考(截至2024年7月): --- ### **第一梯队(综合实力领先)** 1. **百度·文心一言(ERNIE Bot)** - 优势:依托搜索引擎数据和多年NLP技术积累,多模态能力突出,已迭代至4.0版本,覆盖搜索、内容创作、企业服务等领域。 - 生态:通过“文心大模型”开放平台赋能千行百业,商业化落地广泛。 2. **阿里云·通义千问(Qwen)** - 优势:参数规模达万亿级,开源版本(如Qwen-72B)受开发者关注,与阿里云生态深度整合,在电商、金融场景表现突出。 - 动态:通义2.5版本强化逻辑推理和长文本处理能力。 3. **科大讯飞·星火大模型(Spark)** - 优势:专注教育、医疗等垂直领域,语音交互能力国内领先,星火3.5版本在多项中文评测中排名前列。 - 应用:已落地智慧课堂、医疗辅诊等场景。 --- ### **第二梯队(技术突破/垂直领域领先)** 4. **字节跳动·云雀(Lark/Doubao)** - 优势:依托抖音、头条的海量数据,擅长内容生成与推荐,C端产品“豆包”用户增长迅速。 5. **华为·盘古大模型** - 优势:聚焦B端工业场景(气象预测、矿山调度等),联合昇腾AI生态,强调行业解决方案而非通用对话。 6. **智谱AI·GLM大模型** - 优势:清华系团队背景,GLM-4在多语言、代码生成能力突出,开源生态活跃(ChatGLM系列)。 7. **商汤科技·日日新(SenseNova)** - 优势:计算机视觉技术加持,多模态生成(如视频)能力较强,布局智慧城市、自动驾驶等场景。 8. **MiniMax·ABAB大模型** - 优势:聚焦AIGC赛道,旗下“海螺AI”在长文本生成和拟人化交互体验上有特色。 --- ### **第三梯队(快速追赶/细分赛道)** 9. **零一万物·Yi系列** - 亮点:李开复团队推出,Yi-34B曾登顶HuggingFace开源榜,长上下文处理能力突出。 10. **百川智能·Baichuan** - 亮点:王小川团队主导,Baichuan2开源模型在中文数学、代码任务表现优异。 11. **深度求索·DeepSeek** - 亮点:专注模型轻量化,DeepSeek-MoE架构在推理成本控制上有创新。 12. **昆仑万维·天工(Skywork)** - 动态:3.0版本支持万字上下文,重点布局海外市场。 --- ### **评价维度补充** - **开源影响力**:智谱AI(ChatGLM)、阿里(Qwen)、零一万物(Yi)的开源模型在开发者社区接受度较高。 - **垂直领域**:医疗(医联的MedGPT)、金融(恒生的Warren)、法律(幂律的ChatLaw)等赛道涌现专业模型。 - **政策支持**:北京、上海、深圳等地政府主导的联合实验室(如北京通用AI研究院)正推动国产算力与模型协同发展。 --- ### **争议与挑战** 1. **同质化竞争**:多数大模型在通用能力上趋同,差异化多依赖数据场景而非技术代差。 2. **算力瓶颈**:英伟达芯片限制下,国产算力(华为昇腾、寒武纪等)的适配仍需时间。 3. **商业化路径**:除云服务、API调用外,C端付费习惯尚未成熟,盈利模式待探索。 建议结合具体场景需求(如开源/闭源、中文理解、行业适配)选择模型,可参考权威评测(如SuperCLUE、C-Eval)的最新结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值