基于FPGA实现的MobileNet V1,FPGA深度学习加速器设计 CNN Accelerators based on FPGAs

Automatic Generation of Multi-precision Multi-arithmetic CNN Accelerators for FPGAs

最近arXiv上挂出来一篇文章,采用FPGA实现MobileNet V1,并且完全是不借助片外资源,用的是on-chip memory,没有利用off-chip RAM。整个模型在FPGA的内部有限资源上实现的。能够使得帧率在3000 FPS,这个是最近我看到的一个很快的实现速度了。整个网络采用了多精度实现,而且是软硬件结合的方式。整个实现流程如图所示。

图1: 基于FPGA实现的MobileNet V1加速器设计流程

文中也提到了常规算法,在FPGA上实现所采用的方式,即将计算展开,叫做roll-unroll, flatten。本文采用的flattened streaming cores来进行计算。整个卷积的计算采用的寄存器实现,能够高效的进行操作。这个工程量还是非常大的。下图展示了常规卷积的实现过程,一个周期cycle计算每一层output的c'个通道上的每一个点的值。采用移位或者乘法器的方式实现。第二个分图展示的是depthwise convolution的计算过程,对每一层单独使用一层filter。这个表示也是standard convolution和depthwise convolution的原理解释。

图2: 网络的实现过程

对于多精度,多bit数的执行,将activation的值,设置为8 bit 定点数,只是说定点量化的整数和小数,是可以varying from convolution layer。每一层各有不同,是 一个贪心搜索算法来搜索得到的。 

图3:N-bit定点数的表示,p代表小数的位数

同时,作者也单独把BN层来进行量化,这里是16位 定点数。

图4:BN层的量化过程

整体实现难度很大,需要仔细的去看实现细节。在真实实现过程中,问题还是很多。各种配置文件。c++写一些比较上层难以优化和实现的算法和代码。下端verilog写卷积的模板文件,以及可分离卷积,这些规则极强,大量for循环计算的模块,Verilog效率高。混合精度的实现,需要利用寄存器来发挥优势,而浮点数据的操作,就要消耗更多资源,这时候需要用上层一点的类似于HLS来实现。整个流水的设计,需要紧密的在每一层上做好时钟计算和设计,上一层的网络输出结果,以如何的方式,直接接入下一层的计算。整个流水排开之后,才能达到所叙述的3000fps。单独处理一张图片,应该是不能达到的。

图5:流水现实过程

 具体实现过程还有很多细节,作者的最优权重搜索算法,如何对应不同的input size,模型大小,做扩展,而且是可配置的,这些在FPGA实现上,算是一个优点。因为其他的FPGA实现的方法,都是写完一个,就定死,不方便在重新改写模型的大小,因为里面涉及时序,涉及流水的对齐。这个软件定义模型,然后在硬件综合生成电路,再转换为bit流的方式,可以加快各种模型原型实现的速度。总体不错。如果想更仔细的看里面的各种细节,查看原文吧。

论文链接:Automatic Generation of Multi-precision Multi-arithmetic CNN Accelerators for FPGAs https://arxiv.org/pdf/1910.10075v1.pdf 

**如果有用,记得点赞👍加收藏哦。!!!!**

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值