RT1 RT2 RTX() 学习

RT-1:

初生代的 ‘视觉-语言-动作模型’ 作品

RT-2:

RT1使用130k条机器人遥操作数据训练,展示出了其处理多种任务的能力和很强的泛化能力。但其通用性仍受限于数据集的大小。

若想要得到一个表现出当前LLMs能力的机器人大模型,收集数以亿计的机器人数据在短期内看起来是不可能的。

因此本文提出使用VLMs(trained on Internet-scale vision and language data along with robotic control data:借助其强大的对图像的理解、推理等能力,结合机器人的数据(来自于RT1数据集)和原有的数据一起来对VLMs做co-fine-tuning,使其成为VLA(vision-language-action model),直接输出机器人的控制指令,实现实时的闭环控制。

RT-X:

参考:

机器人研究迎来ImageNet时刻:一个数据集,让DeepMind具身智能大模型突飞猛进

https://robotics-transformer-x.github.io/paper.pdf

Open X-Embodiment: Robotic Learning Datasets and RT-X Models

我们知道,机器人通常在做某一件事情上非常专业,但通用能力很差。一般情况下,你必须针对每项任务、每个机器人和环境训练一个模型。改变一个变量往往需要从头开始。但是,如果我们能将各种机器人学的知识结合起来,创造出一种训练通用机器人的方法呢?

这就是 DeepMind 在过去一段时间所做的事情。他们汇集了来自 22 种不同机器人类型的数据,以创建 Open X-Embodiment 数据集,然后在之前的模型(RT-1 和 RT-2)的基础上,训练出了能力更强的 RT-X(分别为 RT-1-X 和 RT-2-X)。

Paper读后感悟:multiple datasets can improve robot behaviors success, but this obey to the corresponding models. BIg datasets need big network. Small dataset may not work well on big network

<think>好的,我需要解释用户提供的R代码`rt1rt1=normalizeBetweenArrays(as.matrix(rt))`。首先,用户可能对这段代码的作用和使用的函数不太清楚,所以我要先分解各个部分。 首先,代码中的`as.matrix(rt)`将对象`rt`转换为矩阵。`rt`可能是一个数据框或其他数据结构,转换成矩阵确保后续函数适用。接下来是`normalizeBetweenArrays`函数,这个函数名看起来像是用于标准化或归一化处理,特别是在处理多个数组的数据时,比如基因表达数据。 我回忆一下,`normalizeBetweenArrays`可能来自R的limma包,这个包常用于生物信息学中的微阵列数据分析。该函数的作用是对不同数组(比如不同实验批次的芯片数据)进行归一化,消除技术差异,使数据可比。常见的归一化方法可能有quantile归一化、scale归一化等。 然后,用户将结果赋值给`rt1rt1`,可能是变量命名时的笔误,比如`rt1`更常见,但这也可能是用户特定的命名习惯。需要指出可能的拼写错误,但也要尊重用户的原始代码。 接下来,我需要考虑用户可能的背景。他们可能在处理基因表达数据,需要进行预处理步骤中的归一化。解释时需说明归一化的目的,比如消除批次效应,确保数据分布一致,便于后续分析。 还要检查代码是否有潜在问题。例如,`rt`是否正确转换为矩阵,是否确实需要矩阵输入,或者数据框是否也能被函数处理。此外,确认`normalizeBetweenArrays`是否需要其他参数,比如指定方法,但用户代码中没有提供,可能使用默认设置。 最后,整理思路,分步骤解释代码,确保用户理解每个部分的作用,并提醒可能的注意事项,比如包安装、输入数据结构、结果保存等。同时,保持语言简洁,结构清晰,帮助用户逐步理解。</think>让我们逐步解释这段R代码:`rt1rt1=normalizeBetweenArrays(as.matrix(rt))` 1. **输入数据转换** `as.matrix(rt)` 将数据对象 `rt` 强制转换为矩阵格式。原始数据 `rt` 可能是数据框(data.frame)或其他数据结构,转换为矩阵是为了适应后续函数的输入要求。 2. **核心函数作用** `normalizeBetweenArrays()` 是来自 **limma包** 的函数,主要用于: - 消除不同实验批次/芯片之间的技术差异 - 使不同数据集的分布趋于一致 - 常用方法包括:quantile归一化、scale归一化、cyclic loess校正等(默认使用quantile方法) 3. **典型应用场景** 常见于基因表达数据分析(如微阵列芯片、RNA-seq)的预处理阶段,用于: - 消除不同实验批次的系统误差 - 解决样本间测序深度差异 - 使不同数据集具有可比性 4. **结果保存** 归一化后的数据矩阵会被赋值给新变量 `rt1rt1`(注意这里变量名重复了`rt1`,可能是打字错误,建议检查命名) 5. **注意事项** - 需要提前安装并加载limma包:`library(limma)` - 输入数据应为数值矩阵,包含基因表达量(行代表基因,列代表样本) - 归一化方法可通过`method`参数指定,例如:`method="quantile"` 完整代码流程示例: ```r library(limma) # 加载包 rt <- read.csv("raw_data.csv") # 假设原始数据读取 rt_matrix <- as.matrix(rt) # 转换为矩阵 rt_normalized <- normalizeBetweenArrays(rt_matrix) # 归一化处理 ``` 建议后续检查:`str(rt1rt1)`查看数据结构,`boxplot(rt1rt1)`可视化归一化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值