实变函数(2)-测度

1.有界集的内外测度

1.1 开集的长度及其主要性质

1.设G为非空开集, G = ⋃ k ( α k , β k ) , ( α k , β k ) G=\bigcup_{k}(\alpha_k,\beta_k),(\alpha_k,\beta_k) G=k(αk,βk),(αk,βk)为G的构成区间,诸 ( ( α k , β k ) ((\alpha_k,\beta_k) ((αk,βk)互不相交,规定G的长度L((G)为 L ( G ) = ∑ k ( β k − α k ) L(G)=\sum_{k}(\beta_k-\alpha_k) L(G)=k(βkαk)并规定空集的长度为0.
2.开集的长度具有单调性:设 G 1 G_1 G1, G 2 G_2 G2为有界开集, G 1 ⊂ G 2 G_1\subset G_2 G1G2,则 L ( G 1 ) ≤ L ( G 2 ) L(G_1)\leq L(G_2) L(G1)L(G2).
3.次可加性:设有界开集G是有限或可列个开集 G 1 , G 2 , . . . . . . G_1,G_2,...... G1,G2,......的并, L ( G ) ≤ ∑ k L ( G k ) L(G)\leq {\sum_{k}L(G_k)} L(G)kL(Gk).
4.完全可加性:如诸 G k G_k Gk互不相交,则 L ( G ) = ∑ k L ( G k ) L(G)={\sum_{k}L(G_k)} L(G)=kL(Gk).

1.2 闭集的长度及其主要性质

1.设F为非空有界闭集,任取包含F的开区间(a,b),令G=(a,b)-F,则G为开集,定义 b − a − L ( G ) b-a-L(G) baL(G)为闭集F的长度,记为L(F).
2.设F为有界闭集,G为有界开集, F ⊂ G F\subset G FG,则 L ( G − F ) = L ( G ) − L ( F ) L(G-F)=L(G)-L(F) L(GF)=L(G)L(F)

1.3 有界集的内外测度

1.设E为有界集,定义E的外测度 m ∗ E m^*E mE与内测度 m ∗ E m_*E mE m ∗ E = i n f { L ( G ) ; G ⊃ E , G 是 开 集 } m^*E=inf \lbrace L(G);G\supset E,G是开集 \rbrace mE=inf{L(G);GE,G} m ∗ E = s u p { L ( F ) ; F ⊂ E , F 是 闭 集 } m^*E=sup \lbrace L(F);F\subset E,F是闭集 \rbrace mE=sup{L(F);FE,F}
2.内外测度具有:(1)非负性 m ∗ E ≥ 0 m^*E \geq0 mE0, m ∗ E ≥ 0 m_*E\geq 0 mE0.
       (2)单调性: E 1 ⊃ E 2 , m ∗ E 1 ≥ m ∗ E 2 + m ∗ E 1 ≥ m ∗ E 2 E_1 \supset E_2,m^*E_1\geq m^*E_2+m_*E_1\geq m_*E_2 E1E2,mE1mE2+mE1mE2
       (3)次可加性: m ∗ ( ⋃ k E k ) ≤ ∑ k m ∗ E k ; m ∗ ( ⋃ k E k ) ≥ ∑ k m ∗ E k m^*(\bigcup_{k}E_k)\leq \sum_{k}m^*E_k;m_*(\bigcup_{k}E_k)\geq \sum_{k}m_*E_k m(kEk)kmEk;m(kEk)kmEk

1.4 测度和可测集的定义

1.设E是有界集,若 m ∗ E = m ∗ E m^*E=m_*E mE=mE,则称E为勒贝格可测集,简称可测集,可测集的外测度称为测度,记为mE.

2.可测集的性质

2.1 可测集与开集闭集之间的关系

1. 有 界 集 E 是 可 测 集 &ThickSpace; ⟺ &ThickSpace; ∀ ε &gt; 0 , ∃ 开 集 G 及 闭 集 F , 使 G ⊃ E ⊃ F , m ( G − F ) &lt; ε 有界集E是可测集\iff \forall \varepsilon&gt;0,\exists 开集G及闭集F,使G \supset E \supset F,m(G-F)&lt;\varepsilon Eε>0,GF,使GEF,m(GF)<ε.

2.2 可测集关于"并"“交”"余"运算的封闭性

1.(1)E是可测集 &ThickSpace; ⟺ &ThickSpace; E c \iff E^c Ec是可测集(设X=(a,b)).
(2)若 E 1 , E 2 E_1,E_2 E1,E2是可测集,则 E 1 ⋃ E 2 , E 1 ⋂ E 2 , E 1 − E 2 E_1\bigcup E_2,E_1\bigcap E_2,E_1-E_2 E1E2,E1E2,E1E2均为可测集.

2.3 测度的单调性,可加性与连续性

1.设 E 1 , E 2 , . . . . . , E n E_1,E_2,.....,E_n E1,E2,.....,En为有限个互不相交的可测集,则 E = ⋃ k = 1 n E i E=\bigcup_{k=1}^{n}E_i E=k=1nEi为可测集,且 m E = ∑ k = 1 n m E k mE=\sum_{k=1}^{n}mE_k mE=k=1nmEk
2.(1)测度的单调性:设E1,E2是两个可测集,E1 ⊂ \subset E2,则mE1 ≤ \leq mE2.
(2)测度的完全科技与半可加性:设{ E k E_k Ek}是一列可测集,则 E = ⋃ k E k E=\bigcup_{k}E_k E=kEk是可列集且 m E ≤ ∑ k = 1 n m E k mE\leq \sum_{k=1}^{n}mE_k mEk=1nmEk若{ E k E_k Ek}为互不相交的可测集,则 m E = ∑ k = 1 n m E k mE=\sum_{k=1}^{n}mE_k mE=k=1nmEk.
3.测度的连续性:
(1)设 E 1 ⊂ E 2 ⊂ . . . . . . . . E n ⊂ . . . . . . E_1\subset E_2\subset ........E_n\subset ...... E1E2........En...... X = ( a , b ) X=(a,b) X=(a,b)中的渐张可测列,则 m ( lim ⁡ n E n ) = lim ⁡ n E n m(\lim_{n} E_n)=\lim_{n}E_n m(limnEn)=limnEn
(2)设 E 1 ⊃ E 2 ⊃ . . . . . . . . E n ⊃ . . . . . . E_1\supset E_2\supset ........E_n\supset ...... E1E2........En...... X = ( a , b ) X=(a,b) X=(a,b)中的渐缩可测列,则 m ( lim ⁡ n E n ) = lim ⁡ n E n m(\lim_{n} E_n)=\lim_{n}E_n m(limnEn)=limnEn

3.Borel集

1.若G可表示为可列个开集的交集,则称G为 G δ G_\delta Gδ集;若F可表为可列个闭集的并集,则称F为 F σ F_\sigma Fσ集.
2.设E为可测集,则
(1) ∃ G δ \exists G_\delta Gδ G ⊃ E G\supset E GE,使 m G = m E mG=mE mG=mE.
(2) ∃ F σ \exists F_\sigma Fσ G ⊂ E G\subset E GE,使 m F = m E mF=mE mF=mE.
3.E为可测集 &ThickSpace; ⟺ &ThickSpace; ∃ G δ \iff \exists G_\delta Gδ G ⊃ E G \supset E GE F σ F_\sigma Fσ F ⊂ E F \subset E FE,使 m ∗ ( G − F ) = 0 m^*(G-F)=0 m(GF)=0 m ∗ ( E − F ) = 0 m^*(E-F)=0 m(EF)=0.
4.凡可以从开集出发,经有限次或可列次取余集,并集,或交集运算而得到的点集称为Borel集,所有Borel集组成的集类称为Borel集类.

4 可测集的卡拉德屋独利条件

1.设 E ⊂ ( a , b ) , E c = ( a , b ) − E E \subset(a,b),E^c=(a,b)-E E(a,b),Ec=(a,b)E,则有 m ∗ E + m ∗ E c = b − a m_*E+m^*E^c=b-a mE+mEc=ba
2.有界集E为可测集 &ThickSpace; ⟺ &ThickSpace; \iff 对任意集A有 m ∗ A = m ∗ ( A ∪ E ) + m ∗ ( A + E c ) m^*A=m^*(A\cup E)+m^*(A+E^c) mA=m(AE)+m(A+Ec)
3,设E是直线上任一点集,若{ l n l_n ln}是一列覆盖E的开区间,显然这样的覆盖可以很多种,记| l n l_n ln|为开区间 l n l_n ln的长度,则定义E的外测度为: m ∗ E = i n f { ∑ n = 1 ∞ ∣ l n ∣ ; ∀ ⋃ n = 1 ∞ I n ⊃ E } m^*E=inf\lbrace\sum_{n=1}^{\infty}|l_n|;\forall \bigcup_{n=1}^{\infty}I_n\supset E\rbrace mE=inf{n=1ln;n=1InE}
4.设 E ⊂ R E\subset R ER,若对任意 A ⊂ R A\subset R AR m ∗ A = m ∗ ( A ∪ E ) + m ∗ ( A + E c ) m^*A=m^*(A\cup E)+m^*(A+E^c) mA=m(AE)+m(A+Ec),则称E为勒贝格可测集,简称可测集,此时外测度 m ∗ E m^*E mE称为E的测度,记为mE.

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《复变函数》是一本经典的数学教材,由R.L. Ahlfors撰写。这本书主要讲述了复变函数的基本理论和技巧。复变函数指的是定义在复平面上的函数,它们具有与实变函数不同的性质和特征。 这本书以清晰而严谨的方式介绍了复数、复变函数的导数和积分、解析函数与调和函数、级数展开、留数定理、解析函数的唯一性等重要概念和定理。通过逐步引入新的概念和技巧,Ahlfors为读者逐渐建立了对复变函数的深刻理解。 此外,Ahlfors的《复变函数》还涵盖了一些高级主题,如可微分映射、亚纯函数、解析分支、调和导数、黎曼映射定理等。这些内容对于进一步研究与应用复变函数的读者来说非常有价值。 这本书的一大特点是它的几何视角。通过使用黎曼面和共形映射的概念,Ahlfors展示了复变函数的几何解释和应用。他对于黎曼映射和复位移原理的阐述非常精彩,使读者能够更好地理解和运用这些概念。 《复变函数》具有良好的结构和逻辑,以及丰富的例题和习题。这使得读者能够逐步掌握复变函数的基础知识和技巧,并通过习题的练习提高解题能力。 总而言之,《复变函数》是一本经典而权威的复变函数教材。它适用于数学专业的本科生和研究生,以及对复变函数感兴趣的读者。无论是从理论上深入研究复变函数,还是从应用上探索其实际价值,这本书都是一个宝贵的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值