实变函数论3-测度论4:不可测集

本文介绍了勒贝格测度的平移不变性和反射不变性,并利用这些性质构造了一个不可测集。通过在[0,1]区间内分类有理数和无理数,形成不相交的集合类,选取每个类的一个代表构成集合Z,然后通过平移构造出Zn,证明了Zn满足包含一个区间且两两不相交的性质,从而得出Z是不可测集。" 103984304,9045782,Spark ML中的特征变换:字符串到索引与独热编码,"['机器学习', '算法', '数据预处理']
摘要由CSDN通过智能技术生成

在本节中我们仅对直线上每个集是否都是 L L L可测集作出回答,下面我们要作一个不是 L L L 可 测的集.注意构造这样的集不是很容易的,因为我们构造集通常都是从区间出发经过一系列并、交、差等运算来获得,而这样的集都是博雷尔集,当然总是 L L L可测的.下面我们先讲勒贝格测度的平移不变性,然后利用这种平移不变性来构造一个 L L L 不可测集,

对于任何一个实数 α , \alpha , α, R → R \mathbf { R } \rightarrow \mathbf { R } RR的映射 τ a : x → x + α . \tau _ { a } : x \rightarrow x + \alpha . τa:xx+α.它是直线上的一个平移.一个集 E ⊂ R , E \subset \mathbf { R } , ER, 经过平移 α \alpha α 后所得的集记为 τ a E = ∣ x + α : x ∈ E ∣ . \tau _ { a } E = | x + \alpha : x \in E | . τaE=x+α:xE∣.现在我们讨论在平移变换下,集的测度有什么变化显然当 E E E 为 区间时, τ a E \tau _ { a } E τaE 亦为区间,而且 m E = m ( τ a E ) . m E = m \left( \tau _ { a } E \right) . mE=m(τaE).

定理

对任何集 E ⊂ R , E \subset \mathbf { R } , ER, 具有 m ∗ E = m ∗ ( τ a E ) , m ^ { * } E = m ^ { * } \left( \tau _ { a } E \right) , mE=m(τaE), 且当 E E E L L L 可 测时, τ a E \tau _ { a } E τaE 也为 L L L 可 测的

证明
因对任何一列开区间 ∣ I i ∣ , E ⊂ ⋃ i = 1 i I i , \left| I _ { i } \right| , E \subset \bigcup _ { i = 1 } ^ { i } I _ { i } , Ii,Ei=1iIi,同时就有 τ a I i \tau _ { a } I _ { i } τaIi 亦为开区间,以及 τ n E ⊂ ⋃ i = 1 i ( τ a I i ) , \tau _ { n } E \subset \bigcup _ { i = 1 } ^ { i } \left( \tau _ { a } I _ { i } \right) , τnEi=1i(τaIi),所以 m ∗ E = inf ⁡ { ∑ i = 1 ∞ ∣ I i ∣ : E ⊂ ⋃ i = 1 ∗ I i } ⩾ m ∗ ( τ n E ) . m ^ { * } E = \inf \left\{ \sum _ { i = 1 } ^ { \infty } \left| I _ { i } \right| : E \subset \bigcup _ { i = 1 } ^ { * } I _ { i } \right\} \geqslant m ^ { * } \left( \tau _ { n } E \right) . mE=inf{ i=1Ii:Ei=1Ii}m(τnE). τ a E \tau _ { a } E τaE 再平移 τ − α \tau _ { - \alpha } τα 后就是 E , E , E, 所以 m ∗ ( τ a E ) ⩾ m ∗ E . m ^ { * } \left( \tau _ { a } E \right) \geqslant m ^ { * } E . m(τaE)mE.这样就得到 m ∗ E = m ∗ ( τ a E ) . m ^ { * } E = m ^ { * } \left( \tau _ { a } E \right) . mE=m(τaE).如果 E E E L L L 可测,那么对于任何 T ⊂ R , T \subset \mathbf { R } , TR, m ∗ T = m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值