在本节中我们仅对直线上每个集是否都是 L L L可测集作出回答,下面我们要作一个不是 L L L 可 测的集.注意构造这样的集不是很容易的,因为我们构造集通常都是从区间出发经过一系列并、交、差等运算来获得,而这样的集都是博雷尔集,当然总是 L L L可测的.下面我们先讲勒贝格测度的平移不变性,然后利用这种平移不变性来构造一个 L L L 不可测集,
对于任何一个实数 α , \alpha , α, 作 R → R \mathbf { R } \rightarrow \mathbf { R } R→R的映射 τ a : x → x + α . \tau _ { a } : x \rightarrow x + \alpha . τa:x→x+α.它是直线上的一个平移.一个集 E ⊂ R , E \subset \mathbf { R } , E⊂R, 经过平移 α \alpha α 后所得的集记为 τ a E = ∣ x + α : x ∈ E ∣ . \tau _ { a } E = | x + \alpha : x \in E | . τaE=∣x+α:x∈E∣.现在我们讨论在平移变换下,集的测度有什么变化显然当 E E E 为 区间时, τ a E \tau _ { a } E τaE 亦为区间,而且 m E = m ( τ a E ) . m E = m \left( \tau _ { a } E \right) . mE=m(τaE).
定理
对任何集 E ⊂ R , E \subset \mathbf { R } , E⊂R, 具有 m ∗ E = m ∗ ( τ a E ) , m ^ { * } E = m ^ { * } \left( \tau _ { a } E \right) , m∗E=m∗(τaE), 且当 E E E 为 L L L 可 测时, τ a E \tau _ { a } E τaE 也为 L L L 可 测的
证明
因对任何一列开区间 ∣ I i ∣ , E ⊂ ⋃ i = 1 i I i , \left| I _ { i } \right| , E \subset \bigcup _ { i = 1 } ^ { i } I _ { i } , ∣Ii∣,E⊂⋃i=1iIi,同时就有 τ a I i \tau _ { a } I _ { i } τaIi 亦为开区间,以及 τ n E ⊂ ⋃ i = 1 i ( τ a I i ) , \tau _ { n } E \subset \bigcup _ { i = 1 } ^ { i } \left( \tau _ { a } I _ { i } \right) , τnE⊂⋃i=1i(τaIi),所以 m ∗ E = inf { ∑ i = 1 ∞ ∣ I i ∣ : E ⊂ ⋃ i = 1 ∗ I i } ⩾ m ∗ ( τ n E ) . m ^ { * } E = \inf \left\{ \sum _ { i = 1 } ^ { \infty } \left| I _ { i } \right| : E \subset \bigcup _ { i = 1 } ^ { * } I _ { i } \right\} \geqslant m ^ { * } \left( \tau _ { n } E \right) . m∗E=inf{
∑i=1∞∣Ii∣:E⊂⋃i=1∗Ii}⩾m∗(τnE).但 τ a E \tau _ { a } E τaE 再平移 τ − α \tau _ { - \alpha } τ−α 后就是 E , E , E, 所以 m ∗ ( τ a E ) ⩾ m ∗ E . m ^ { * } \left( \tau _ { a } E \right) \geqslant m ^ { * } E . m∗(τaE)⩾m∗E.这样就得到 m ∗ E = m ∗ ( τ a E ) . m ^ { * } E = m ^ { * } \left( \tau _ { a } E \right) . m∗E=m∗(τaE).如果 E E E 为 L L L 可测,那么对于任何 T ⊂ R , T \subset \mathbf { R } , T⊂R, 有 m ∗ T = m