【langchain/入门】安装以及初次使用(deepseek api版本)

说在前面

  • 操作系统:windows
  • python版本:3.9
  • langchain版本:0.3.20
  • pycharm版本:2023.1.2 (Community Edition)

python环境

  • 使用pycharm的一个好处是:它能够比较方便的创建一个python vitual env。所以只要你安装好pycharm,创建一个新工程即可

langchain安装

  • 打开Terminal,直接使用pip安装即可
    (venv) PS E:\Workspace\pycharm\langchain> pip install langchain
    
  • 安装后点一下这个按钮,刷新下packages,不然会提示找不到langchain
    在这里插入图片描述

初次使用(deepseek)

  • 安装deepseek api包

    pip install -U langchain-deepseek
    
  • 拷贝代码环节

    import getpass
    import os
    
    if not os.environ.get("DEEPSEEK_API_KEY"):
        os.environ["DEEPSEEK_API_KEY"] = getpass.getpass("Enter API key for DeepSeek: ")
        # 不想输的话改成下面这个
        # os.environ["DEEPSEEK_API_KEY"] = '你的API Key'
    
    from langchain.chat_models import init_chat_model
    
    model = init_chat_model("deepseek-chat", model_provider="deepseek")
    
    response = model.invoke("Hello, world!")
    print(response.content)
    
  • 补充说明-deepseek api key获取
    官网注册账号,实名认证后,使用蓝绿修改器吧
    在这里插入图片描述
    在这里插入图片描述
    创建后复制保存即可

  • 在terminal中运行

    (venv) PS E:\Workspace\pycharm\langchain> python.exe .\main.py
    Hello, world! How can I assist you today? 😊
    

    这个就是最简单的版本,单次会话,无上下文

### 如何在 CUDA 10.2 上安装 PyTorch 为了确保顺利安装适用于 CUDA 10.2 的 PyTorch 版本,建议通过 Anaconda 来管理依赖关系和环境。以下是具体操作指南: #### 创建并激活新的 Conda 环境 推荐先创建一个新的 Python 环境来隔离不同项目的库文件,防止版本冲突。 ```bash conda create -n pytorch_env python=3.7 conda activate pytorch_env ``` #### 配置国内镜像源加快下载速度 考虑到网络因素可能影响包的获取效率,可设置清华大学开源软件镜像站作为默认渠道之一[^5]。 ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/ ``` #### 安装指定版本的 PyTorch 及其相关组件 根据需求选择合适的 PyTorch 和其他必要的扩展模块版本进行安装。对于 CUDA 10.2 用户来说,可以选择如下命令完成安装过程[^2]。 ```bash conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch ``` #### 验证安装情况 最后一步是在 Python 解释器内部验证是否正确加载了带有 GPU 支持功能的 PyTorch 库[^4]。 ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 如果一切正常,则会显示相应的 PyTorch 版本号,并确认存在可用的 CUDA 设备支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值