【Dify/入门】使用Dify创建代码知识库并在工作流中使用

说在前面

  • Dify版本:1.0.1(官网在线版本)
  • LLM API:阿里QWEN
  • go代码预处理:这里,使用链接里这行的函数

配置API Key

  • 这里使用的是阿里云百炼,创建账号也是会送一些Token使用量,在控制台右上角选择API-KEY新建即可
    在这里插入图片描述
  • 没有使用DeepSeek是因为现在好像还没有embedding模型

创建知识库

  • 创建还是比较简单的,在知识库页签选择创建
    在这里插入图片描述
  • 选择文件上传
    在这里插入图片描述
    不过看起来并不支持各种代码文件
  • 我这里选择的是预处理过的go代码文件,文件格式如下
    ####DtTestMerge(path []detour.DtPolyRef, npath, maxPath int,
    	visited []detour.DtPolyRef, nvisited int) int {
    		return dtMergeCorridorStartShortcut(path, npath, maxPath, visited, nvisited)
    	}
    ###dtcrowd/DtTestMerge
    
    使用####分割父文本,###分割子文本
  • 导入文件后选择分段设置,这里使用的是父子分段
    在这里插入图片描述
    父块是实际要使用的文本内容,子块用于检索查询。
    正常来讲,这样设置后的结果是这样的,以下为父块:
    DtTestMerge(path []detour.DtPolyRef, npath, maxPath int,
    	visited []detour.DtPolyRef, nvisited int) int {
    		return dtMergeCorridorStartShortcut(path, npath, maxPath, visited, nvisited)
    }
    
    以下为子块:
    dtcrowd/DtTestMerge
    
    但是它的分段标识符似乎没有生效,在切割的时候还是用的默认的\n\n以及\n
  • 选择embedding模型,随便选一个
    在这里插入图片描述
  • 点击保存后等待状态变为可用
    在这里插入图片描述
  • 在阿里后台可以看到调用次数,测试的时候文件不要太多
    在这里插入图片描述

创建代码理解工作流

  • 工作室页签选择创建空白应用
    在这里插入图片描述

  • 选择工作流,起个响亮的名字
    在这里插入图片描述

  • ok,一个空荡荡的工作流就出现了
    在这里插入图片描述

  • 点击开始的号,选择问题分类器
    在这里插入图片描述

  • 在右侧窗口填入对应参数,模型选择我们配置好的QWEN;输入变量sys.query代表的是用户对话输入的文本;分类1我们填入其他问题,分类2填入解释代码相关的问题。如果对某些参数不理解,可以点击右上方的书本按钮(三个点左侧按钮)查看相应的教程
    在这里插入图片描述

  • 然后点击其他问题对应的号,添加一个直接回复
    在这里插入图片描述
    里面可以填入我们写死的回复
    在这里插入图片描述

  • 然后点击右上角的会话变量图标(如下),我们先添加一个会话变量,就叫code_rag
    在这里插入图片描述

  • 点击分类2的号,添加一个变量赋值节点
    在这里插入图片描述
    我们将sys.query变量的值赋给我们刚刚新建的会话变量code_rag
    在这里插入图片描述

  • 添加一个知识检索节点
    在这里插入图片描述
    它的输入是我们要查询的文本,它会通过相似度匹配算法从我们创建的知识库中索引对应的文本;查询变量选择code_rag,由于刚刚我们把用户输入赋给了code_rag,所以这一步的作用实际上就是根据用户输入的文本查询对应的代码。
    在这里插入图片描述

  • 然后添加一个LLM节点,将我们查询的代码让大模型帮我们去理解
    在这里插入图片描述
    这个节点相对复杂,首先是模型,我们还是选择QWEN;上下文就是我们刚刚知识检索的结果,这个数据要发给模型。SYSTEM是系统提示词,这里需要耗点脑子想下怎么写。
    在这里插入图片描述

  • 再添加一个变量赋值节点,将LLM的输出结果赋给code_rag
    在这里插入图片描述

  • 添加一个问题分类器,根据code_rag的内容让模型决定需不需要再次查询知识库
    在这里插入图片描述

  • 如果需要继续查询,那我们再添加个查询流程;如果不需要,那我们直接返回模型的输出
    在这里插入图片描述

试试效果

  • 点击预览
    在这里插入图片描述
  • 输入问题,DtTestMerge的作用是什么?
    DtTestMerge(path []detour.DtPolyRef, npath, maxPath int,
    	visited []detour.DtPolyRef, nvisited int) int {
    		return dtMergeCorridorStartShortcut(path, npath, maxPath, visited, nvisited)
    	}
    
    DtTestMerge是我手动加的一个测试函数,里面直接调用另一个函数,看看会不会去查询另一个函数的实现
    在这里插入图片描述

其他

  • 在查询知识库的时候额外用了一个code_rag的变量,这是因为之前考虑查询知识库→LLM这个流程是可以循环的
  • Dify用起来似乎还行?主要是拖拖拽拽就可以了,挺方便的,而且做出来的东西直接可以给别人用,不用再找个前端 在这里插入图片描述
### 配置 Dify 知识库工作流 Dify 是一种基于 AI 的工具,能够通过其强大的工作流功能实现复杂任务的自动化处理。以下是关于如何配置和使用 Dify 知识库中的工作流的相关说明。 #### 工作流的核心机制 工作流的设计遵循了一种循环模式:大模型读取数据、解析输入、调用外部工具或 API 来获取额外的信息、生成中间结果将该结果返回到大模型中进一步分析,直到得出最终结论[^1]。这种流程使得复杂的多步推理成为可能,允许动态调整每一步的行为。 #### 行处理能力增强 自版本 v0.8.0 开始,Dify 支持多种类型的行执行方式来优化性能,包括但不限于简单行、嵌套行、迭代过程中的行以及条件触发下的行操作[^2]。这意味着用户可以根据实际需求灵活定义不同分支的任务逻辑,在提升效率的同时保持较高的灵活性。 #### 实际应用案例 假设我们需要构建一个用于客户支持查询的知识管理系统,则可以通过如下步骤设置相应的工作流: 1. **初始化请求接收** 当接收到用户的自然语言提问时,启动整个流水线的第一阶段——理解意图。 2. **信息检索与匹配** 利用内置搜索引擎快速定位最接近目标主题的文章片段或其他形式的数据源作为候选答案集的一部分。 3. **结构化数据分析** 如果某些特定字段需要更精确地提取出来(比如价格表),则可引入专门定制化的正则表达式或者第三方 NLP 库完成此部分任务。 4. **综合判断及反馈生成** 将上述各环节产生的子成果汇总起来交给核心算法做最后裁决,形成易于被人类接受的回答格式呈现给终端使用者。 ```python from dify import Agent, Workflow def configure_workflow(): agent = Agent() workflow = Workflow(agent=agent) # 添加简单的串行节点 workflow.add_step("read_input", lambda data: parse_user_query(data)) workflow.add_step("fetch_data", fetch_relevant_documents) workflow.add_step("analyze_results", analyze_and_summarize) # 定义行任务 parallel_tasks = [ {"name": "task_a", "func": task_function_a}, {"name": "task_b", "func": task_function_b} ] workflow.add_parallel_steps(parallel_tasks) return workflow def run_example(workflow_instance): input_data = get_user_request() # 获取用户输入 result = workflow_instance.execute(input_data=input_data) send_response_to_user(result) # 发送响应至前端界面 ``` 以上代码展示了基本框架搭建方法论之一,其中涉及到了几个重要概念如 `Agent` 和 `Workflow` 类型对象实例化及其相互关系绑定;同时也体现了如何向序列添加常规顺序动作项以及怎样声明一组发运行的小单元组群。 #### 注意事项 - 在规划具体实施方案之前,请务必仔细阅读官方文档里有关于最新特性介绍的部分,因为随着软件不断升级改进可能会有新的参数选项加入进来影响既有策略效果评估标准变化等问题发生。 - 对于初学者来说建议从小规模试验起步逐步积累经验后再尝试更大范围部署以免造成不必要的麻烦损失。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值