DSP控制buck变换器全解(下)

本文介绍了同步整流Buck变换器的工作原理,其通过同步开关管减少功率损耗,提高效率。在MATLAB环境中,通过建立开关元件的开关模型和LC滤波器的传递函数模型来模拟整个系统。推导了变换器的传递函数,涉及PWM控制、电感电流和输出电压的关系,以及占空比对系统性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、同步整流buck

同步整流Buck变换器是一种直流至直流(DC-DC)的电力转换器。

它通过调节输入电压和输出电压之间的比例来充电电池或为电路提供所需的电压。除了传统的Buck变换器具有的降压功能外,它还具有同步整流功能。同步整流可以减少电源的损失,提高电源的效率。

在同步整流Buck变换器中,通过使用主开关管和同步开关管来减小开关管的反向通道的损耗。

2、matlab建模

同步整流 buck 变换器主要包含两个开关元件和一个滤波器,因此其建模可以分为两部分:

  1. 建立开关元件的开关模型

由于同步整流 buck 变换器的两个开关元件工作方式相同,因此这里以 Q1 作为例子进行建模。

假设 Q1 的导通状态为 1,断开状态为 0,则可以用下面的代码表示其开关模型:

if Q1==1
    iL1 = (Vin-Vout)/L;
    Vgs1 = Vin;
else
    iL1 = -Vout/L;
    Vgs1 = 0;
end

其中,iL1 表示电感电流,L 表示电感感值,Vin 和 Vout 分别表示输入电压和输出电压,Vgs1 表示驱动信号。

同样可以用类似的方法建立另一个开关元件 Q2 的开关模型。

  1. 建立滤波器的传递函数模型

同步整流 buck 变换器的滤波器通常为 LC 滤波器,可以用如下代码建立其传递函数模型:

s = tf('s');
C = 10e-6;
L = 100e-6;
R = 10;
G = 1/(1+R*(C+s*L));
H = G/(s*C);

其中,C、L 分别为电容和电感的参数,R 为负载电阻,G 表示滤波器的传递函数,H 表示整个同步整流 buck 变换器的传递函数,可以用它来分析其性能和稳定性。

综上所述,同步整流 buck 变换器的建模涉及到开关元件和滤波器两个部分,需要分别建立它们的模型,并且结合起来得到整个系统的传递函数。

同步整流buck变换器是一种常用的DC-DC变换器,其传递函数可以通过分析其电路结构进行推导。以下是推导过程。

首先,考虑同步整流buck变换器的电路结构。

其中,Vin为输入电压,Vout为输出电压,L为电感,C为输出电容,Q1和Q2为同步开关管,D为输出二极管,Vsw1和Vsw2为开关管的导通电压。考虑控制信号PWM的作用,PWM为脉宽调制信号,可以控制Q1和Q2的导通时间,从而控制输出电压Vout。

为了方便推导,假设同步整流buck变换器的输出电流为一定值,即输出电流稳定。

根据Kirchhoff定律,可以列出电路的电压和电流方程:

V i n = L d i L d t + V s w 1 + V D V_{in}=L\frac{di_L}{dt}+V_{sw1}+V_D Vin=LdtdiL+Vsw1+VD

V o u t = V D + V s w 2 V_{out}=V_D+V_{sw2} Vout=VD+Vsw2

其中,iL为电感电流。根据PWM控制信号,可以将开关管的导通时间分为两段,分别为t1和t2。在导通时间t1内,Q1导通,Q2关断;在导通时间t2内,Q1关断,Q2导通。因此,可以将电路划分为两个状态:

状态1:0<t<t1

此时,Q1导通,Q2关断。根据电路的稳态模型,可以得到:

V i n = L d i L d t + V s w 1 + V D V_{in}=L\frac{di_L}{dt}+V_{sw1}+V_D Vin=LdtdiL+Vsw1+VD

V o u t = V D V_{out}=V_D Vout=VD

因此,开关管导通时间t1内,电感电流的变化率为:

d i L ( t ) d t = 1 L ( V i n − V D − V s w 1 ) \frac{di_L(t)}{dt}=\frac{1}{L}(V_{in}-V_D-V_{sw1}) dtdiL(t)=L1(VinVDVsw1)

状态2:t1<t<T

此时,Q1关断,Q2导通。根据电路的稳态模型,可以得到:

V i n = L d i L d t + V D + V s w 2 V_{in}=L\frac{di_L}{dt}+V_D+V_{sw2} Vin=LdtdiL+VD+Vsw2

V o u t = V D + V s w 2 V_{out}=V_D+V_{sw2} Vout=VD+Vsw2

因此,开关管导通时间t2内,电感电流的变化率为:

d i L ( t ) d t = 1 L ( V i n − V D − V s w 2 ) \frac{di_L(t)}{dt}=\frac{1}{L}(V_{in}-V_D-V_{sw2}) dtdiL(t)=L1(VinVDVsw2)

综合两个状态下电感电流的变化率,可以得到整体的电感电流变化率表达式:

d i L ( t ) d t = 1 L ( V i n − V D − γ V s w ) \frac{di_L(t)}{dt}=\frac{1}{L}(V_{in}-V_D-\gamma V_{sw}) dtdiL(t)=L1(VinVDγVsw)

其中, γ = t 1 T \gamma=\frac{t_1}{T} γ=Tt1,表示开关管导通时间t1所占总周期T的比例; V s w = γ V s w 1 + ( 1 − γ ) V s w 2 V_{sw}=\gamma V_{sw1}+(1-\gamma)V_{sw2} Vsw=γVsw1+(1γ)Vsw2,表示开关管的导通电压,可以看作是开关管的平均导通电压。

将上式代入Kirchhoff定律中,可以得到同步整流buck变换器的传递函数:

V o u t ( s ) V i n ( s ) = − D 2 1 − D + s L R c \frac{V_{out}(s)}{V_{in}(s)}=-\frac{D^2}{1-D+\frac{sL}{R_c}} Vin(s)Vout(s)=1D+RcsLD2

其中,D为PWM控制信号的占空比, R c = V o u t I o u t R_c=\frac{V_{out}}{I_{out}} Rc=IoutVout为输出电路的等效电阻。

【最后一个bug】多平台都有更新和发布,大家可以一键三连,关注+星标,不错过精彩内容~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

最后一个bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值