深度学习:学习率learning rate 的设定规律

Introduction

学习率 (learning rate),控制 模型的 学习进度 : 
这里写图片描述

学习率大小

 学习率 大学习率 小
学习速度
使用时间点刚开始训练时一定轮数过后
副作用1.易损失值爆炸;2.易振荡。1.易过拟合;2.收敛速度慢。

学习率设置

在训练过程中,一般根据训练轮数设置动态变化的学习率。

  • 刚开始训练时:学习率以 0.01 ~ 0.001 为宜。
  • 一定轮数过后:逐渐减缓。
  • 接近训练结束:学习速率的衰减应该在100倍以上。

Note: 
如果是 迁移学习 ,由于模型已在原始数据上收敛,此时应设置较小学习率 (104≤10−4) 在新数据上进行 微调 。

学习率减缓机制

 轮数减缓指数减缓分数减缓
英文名step decayexponential decay1/t1/t decay
方法每N轮学习率减半学习率按训练轮数增长指数插值递减lrt=lr0/(1+kt)lrt=lr0/(1+kt) ,kk 控制减缓幅度,tt 为训练轮数

把脉 目标函数损失值 曲线

理想情况下 曲线 应该是 滑梯式下降 [绿线]: 
这里写图片描述

  1. 曲线 初始时 上扬 [红线]: 
    Solution:初始 学习率过大 导致 振荡,应减小学习率,并 从头 开始训练 。
  2. 曲线 初始时 强势下降 没多久 归于水平 [紫线]: 
    Solution:后期 学习率过大 导致 无法拟合,应减小学习率,并 重新训练 后几轮 。
  3. 曲线 全程缓慢 [黄线]: 
    Solution:初始 学习率过小 导致 收敛慢,应增大学习率,并 从头 开始训练 。

[1]解析卷积神经网络—深度学习实践手册

[2]调整学习速率以优化神经网络训练

### 回答1: 可以使用学习率调度器来实现对学习率的调优,例如 PyTorch 中的 StepLR、ReduceLROnPlateau 等调度器。这些调度器可以根据训练过程中的指标变化自动调整学习率,从而提高模型的性能。 ### 回答2: 在深度学习中,学习率是指定模型在每次迭代中应该跳跃的步长的参数。选择合适学习率对于优化深度学习模型的训练非常重要。以下是一种可以用代码实现对学习率进行调优的方法: 1. 首先,定义一个学习率初始值: ``` learning_rate = 0.001 ``` 2. 然后,定义一个函数或循环来训练模型,并在每次迭代结束后使用以下方法来更新学习率: ``` if current_iteration % update_frequency == 0: # 每隔一定迭代次数更新一次学习率 learning_rate *= update_factor # 根据预先设定的更新因子更新学习率 ``` 其中,`current_iteration`表示当前迭代次数,`update_frequency`表示设定的更新频率,`update_factor`表示学习率的更新因子。 3. 在每次更新学习率后,使用新的学习率来优化模型参数。例如,在使用梯度下降法进行优化时,可以使用如下公式更新模型参数: ``` parameters -= learning_rate * gradients ``` 其中,`parameters`表示模型的参数,`gradients`表示计算得到的梯度。 通过这种方式,可以在训练过程中动态地调整学习率,使其逐渐减小或增大,以寻找到更好的模型性能。这样的调优方法可以提高模型在训练过程中的收敛速度和稳定性。不同的更新频率和更新因子的选择可能会导致不同的效果,因此需要根据具体情况进行调试和优化。 ### 回答3: 在深度学习中,学习率的选择对于算法的性能至关重要。过小的学习率会导致梯度下降的收敛速度过慢,而过大的学习率则容易导致算法发散。因此,调优学习率深度学习模型中非常重要的一步。 调优学习率的方法主要有两种:手动调优和自动调优。 手动调优是指根据经验和观察模型的训练过程来调整学习率。一般来说,开始训练时可以选择一个较大的学习率,然后逐渐减小学习率,直到模型达到最佳性能。观察模型在训练过程中损失函数的变化情况,如果损失函数一直下降,说明学习率合适;如果损失函数震荡或不收敛,说明学习率过大或过小。 自动调优学习率的方法有很多,其中一种常用的方法是使用学习率调度器。学习率调度器根据模型训练的进展情况自动调整学习率。具体来说,在每个迭代更新参数之前,学习率调度器通过提前设定好的规则来决定当前的学习率。常见的学习率调度方法有StepLR、MultiStepLR、ReduceLROnPlateau等。 以PyTorch为例,可以使用其提供的learning rate scheduler来实现学习率自动调优。首先,需要定义一个优化器,如SGD或Adam,并设置一个初始学习率。然后,根据需求选择一个学习率调度器,并将Optimizer和调度器作为参数传入。接下来,在每个epoch之后调用调度器的step方法来更新学习率。调度器会根据预设的规则调整学习率,并将其应用到优化器上。 总之,在深度学习中,学习率的选择是一个很重要的问题。通过手动调优或使用学习率调度器,我们可以更好地控制学习率的变化,从而提高模型的性能和收敛速度。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值