本文将为大家对电工杯B题进行超详细的思路解析。优化类型的题目是9月份国赛必出题目,个人建议尝试B题对今年国赛备战非常有帮助,可以试一试 。
随着城市垃圾产量不断攀升,垃圾分类后“厨余垃圾”“可回收物”“有害垃圾”“其他垃圾”需由专用车辆分别收集、运输至处理厂或中转站。如何在车辆载重、容积、时间窗口、成本与碳排放等多重约束下,合理选址中转站、分配收集任务、规划最优路径,并调度多类型车辆循环作业,以在保证服务质量的同时最小化总运输成本和碳排放,是一项典型的多目标、多约束组合优化问题。
一、问题一:单一车辆类型下的基础路径优化与调度
问题简介:这是一个带载重约束的车辆路径规划问题(Capacitated Vehicle Routing Problem, CVRP)。在城市中有n个厨余垃圾收集点,每个收集点有固定的坐标位置(x_i, y_i)和每日垃圾产生量w_i。需要安排载重量为Q吨的同质车辆从垃圾处理厂(节点0)出发,访问所有收集点收集垃圾后返回处理厂,目标是最小化总行驶距离。
模型假设:
1、只考虑“厨余垃圾”,且各收集点的产生量、坐标、车辆参数每日不变;
2、路网距离对称且满足三角不等式,用欧氏距离近似;
3、车辆行驶速度恒定,发车点(厂区)可多辆同时出发,且车辆可多次出返;
4、不考虑交通拥堵、装卸时间等因素。
枚举法先把所有可能的单趟方案都算出来,再从中挑组合
1、把客户点的每一个非空子集都列举出来(共2^n-1种),只保留那些总需求量不超过车辆载重 Q的子集。
2、单趟最优回路
对每个合法子集,枚举它所有可能的访问顺序(排列),算出哪一个顺序从厂区出发、依次走完这些点再回厂的总距离最少,就把这条最短回路记下来。
3、组合覆盖
现在有一堆“(子集 → 最短回路 → 距离)”三元组,接下来我们要从中选出若干条回路,既要 恰好覆盖所有客户且不重复,又要让它们的总距离最少。
用一个简单的递归(DFS)来尝试:选一条包含某个还没覆盖点的回路,把对应的点标记成“已覆盖”,再继续选下一条,直到覆盖完所有点。过程中用“当前距离 ≥ 已知最优” 来剪枝,大大提前结束不可能更优的分支
两阶段启发式算法
第一阶段:扫描算法聚类分组
1.1极坐标变换
目标:将笛卡尔坐标系下的收集点转换为极坐标表示,以处理厂为原点建立极坐标系。
使用贪心算法进行求解,在每一步选择中,算法总是尽可能多地将收集点分配给当前车辆,这样可以最小化车辆使用数量。
第二阶段:路径优化
第二阶段的目标是对第一阶段得到的每个聚类 C_k 求解旅行商问题(TSP),找到访问聚类内所有点的最短回路。
目标函数:最小化车辆
的总行驶距离
即新的两条边的总长度小于原来两条边的总长度。
求解结果如下所示
求解时间: 0.0206秒
使用车辆数量: 18辆
总行驶距离: 1296.49公里
平均每辆车行驶距离: 72.03公里
车辆1路径: 0 -> 13 -> 0
载重: 3.2/5.0吨, 行驶距离: 56.89公里
车辆2路径: 0 -> 6 -> 20 -> 0
载重: 4.9/5.0吨, 行驶距离: 65.98公里
车辆3路径: 0 -> 29 -> 0
载重: 3.7/5.0吨, 行驶距离: 72.80公里
车辆4路径: 0 -> 21 -> 10 -> 0
载重: 4.6/5.0吨, 行驶距离: 81.74公里
车辆5路径: 0 -> 4 -> 0
载重: 3.1/5.0吨, 行驶距离: 53.85公里
车辆6路径: 0 -> 25 -> 14 -> 0
载重: 4.6/5.0吨, 行驶距离: 64.87公里
车辆7路径: 0 -> 26 -> 0
载重: 3.6/5.0吨, 行驶距离: 69.97公里
车辆8路径: 0 -> 5 -> 0
载重: 2.7/5.0吨, 行驶距离: 82.68公里
车辆9路径: 0 -> 1 -> 23 -> 0
载重: 4.7/5.0吨, 行驶距离: 90.97公里
车辆10路径: 0 -> 9 -> 22 -> 0
载重: 4.6/5.0吨, 行驶距离: 69.16公里
贪心最近邻法车辆数=18, 总行驶距离=1350.81 km
车1: 路线 [0 11 15 1 0] | 载重 4.80 吨 | 距离 32.07 km
车2: 路线 [0 2 18 8 0] | 载重 4.70 吨 | 距离 53.96 km
车3: 路线 [0 21 6 27 0] | 载重 4.10 吨 | 距离 68.16 km
车4: 路线 [0 25 9 0] | 载重 4.40 吨 | 距离 59.03 km
车5: 路线 [0 4 3 0] | 载重 4.90 吨 | 距离 83.60 km
一、问题二:多车辆协同与载重约束下的优化
问题简介:这是一个异构车队车辆路径问题(Heterogeneous Fleet Vehicle Routing Problem, HFVRP)的变种。城市中收集点产生4类不同垃圾(厨余垃圾、可回收物、有害垃圾、其他垃圾),每类垃圾需要专用车辆运输。不同类型车辆具有不同的载重限制Q_k、容积限制V_k和单位距离运输成本C_k
=== 垃圾类型 1 (Q=8.0 吨, C=2.5 元/km) ===
车 1: 路径 [0 11 15 1 21 6 25 17 0] | 载重 7.98 吨 | 距离 101.37 km
车 2: 路径 [0 2 18 8 24 12 0] | 载重 7.30 吨 | 距离 72.76 km
车 3: 路径 [0 27 28 3 30 7 16 0] | 载重 7.94 吨 | 距离 101.12 km
车 4: 路径 [0 4 14 20 29 10 5 0] | 载重 7.70 吨 | 距离 95.18 km
车 5: 路径 [0 9 22 26 19 23 0] | 载重 5.88 吨 | 距离 104.67 km
车 6: 路径 [0 13 0] | 载重 2.58 吨 | 距离 56.89 km
类型 1 共用车辆 6 辆, 总距离 531.98 km, 总成本 1329.95 元
=== 垃圾类型 2 (Q=6.0 吨, C=2.0 元/km) ===
车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 0] | 载重 5.99 吨
类型 2 共用车辆 2 辆, 总距离 246.59 km, 总成本 493.19 元
三、问题三:含中转站选址与时间窗口的综合优化
问题简介:这是一个选址-路径集成问题(Location-Routing Problem, LRP)的扩展,结合了设施选址、车辆路径规划和环境约束。需要在候选位置中选择中转站,考虑中转站的时间窗口约束、存储容量限制,同时优化从收集点到中转站再到处理厂的两段式运输路径,并控制碳排放。