负数取绝对值时小心越界:如abs(-2147483648)、-(-2147483648)

有时解题中需要将变量n转为正数处理,而在变量n取值范围很大时,如32位有符号整数[−231, 231 − 1] ,需要注意转换时越界问题。

int取值范围Value
二进制[−231, 231 − 1]
十进制[-2147483648, 2147483647]
十六进制[0x80000000, 0x7fffffff]

1、越界现象:
以下函数,当传入参数n-2147483648,转换为正数时会发生越界问题。

void myFunc(double x, int n) { // 输出|n|次x
	int abs_n = abs(n); // n为-2147483648时越界,abs_n 仍为-2147483648
	for(int i = 0; i!=abs_n; i++){
		cout<<x<<end;
	}
} 

以上代码陷入死循环,因为对INT_MIN取绝对值仍为INT_MIN,(0x80000000按照补码取负规则还是0x80000000)。

2、解决方法:
2.1、先扩大值类型,再取绝对值:

void myFunc(double x, int n) { // 输出|n|次x
	long long n_ = n; // n_在 long long范围内,不越界
	方式一:
	n_ = abs(n_); // n_为2147483648
	方式二:
	n_ = -n_; // 直接取负号更好
	for(int i = 0; i!=abs_n; i++){
		cout<<x<<end;
	}
} 

int类型扩大至long long类型,这样就不会溢出了。因为有的编译器int与long长度相同,因此必须扩大至long long
2.2、求绝对值函数abs()源码:

int abs(int number)
{
   return( number>=0 ? number : -number );
}

abs()函数源码可知,负数求绝对值为直接取负号,因此直接使用方式二:n_ = -n_; 更好,省区了函数调用过程。

3、实验测试:
abs函数(取绝对值)返回值可以是负数。
在这里插入图片描述
参考资料:
1、建议浏览:牛客网选择题:math.h的abs返回值()
2、那个您经常用的abs函数(取绝对值)真的总是返回非负数吗
3、C标准库函数abs的一个错误

总结:

1、负数取绝对值小心越界问题,因此先将值范围扩大如int->long long,再取绝对值。
2、取绝对值函数为直接加负号,因此直接用n_ = -n_; ,省区函数调用过程。
3、对INT_MIN取绝对值仍为INT_MIN,(0x80000000按照补码取负规则还是0x80000000)。

### Java 中负十进制数转二进制的方法 在Java中处理负整数到其二进制表示的方式主要依赖于计算机内部采用的补码表示法。对于正数而言,直接通过除以2余可以获对应的二进制串;但对于负数,则需遵循特定规则。 当涉及到负数,最简单有效的方法之一是利用`Integer.toBinaryString()`函数,此内置方法能够自动处理符号扩展并返回正确的二进制字符串表示[^1]: ```java public class NegativeDecimalToBinary { public static void main(String[] args) { int num = -8; String binaryString = Integer.toBinaryString(num); System.out.println(binaryString); } } ``` 上述代码片段展示了如何快速简便地完成从负十进制至二进制字符串之间的转换操作。值得注意的是,默认情况下输出不会显示前导零以及符号位(即最高位),因此如果希望看到完整的32位有符号整型所占用的空间情况,可以通过填充额外的'0'来实现完整展示[^2]。 另外一种手动实现方式涉及到了解补码的概念——即将原码逐位反加一获得最终结果。具体来说,先绝对值部分的二进制表达式,之后对其做按位非运算(`~`)再加上1即可得到期望的结果[^3]: ```java public class ManualNegativeDecimalToBinary { public static void main(String[] args){ int number=-8; // 获绝对值 int absValue=Math.abs(number); // 将其转化为无符号形式下的二进制序列 String unsignedBinStr=Integer.toBinaryString(absValue ^ 0xFFFFFFFFL)+1; // 去掉多余的字符并打印出来 System.out.print(unsignedBinStr.substring(1)); } } ``` 然而需要注意这段代码存在逻辑错误,因为简单的异或全集并不能正确反映实际过程中的反动作,而且后续加上的一也未必能准确落在预期位置上。更严谨的做法应该是基于循环结构逐步构建目标二进制串,同考虑好边界条件等问题。 #### 补充说明关于补码机制 由于计算机硬件层面的原因,所有的数值都是以内存单元的形式被保存下来的,而这些内存单元本质上是由一系列比特(bit)组成。针对不同的数据类型,会规定一定数量的比特用于存储相应范围内的值。对于带符号类型的变量,首位通常作为标志位(sign bit),用来区分正值还是负值。当遇到负数候,机器并不是单纯地把原始二进制模式反转过来就结束,而是采用了更加复杂的编码方案——这就是所谓的“补码”。 对于任意给定的一个N位二进制数X,它的补码定义为其模\(2^{N}\)减去它本身再加1后的结果。这种设计使得算术溢出自然发生而不必显式判断是否越界,并简化了许多基本运算的操作流程。例如,在32位系统环境下(-8)的实际物理表现形式为:1111...1111 1111 1000 (共32个bit),其中前面连续多个‘1’代表的就是符号延伸部分.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值