正项级数的积分审敛法,p级数的敛散性

定理

Suppose f ( x ) f(x) f(x) is continuous, positive and decreasing on [ 1 , ∞ ] \left[ 1,\infty \right] [1,]. If a n = f ( n ) a_n=f(n) an=f(n) for all n = 1 , 2 , . . . n=1,2,... n=1,2,..., then
∑ n = 1 ∞ a n   i s   c o n v e r g e n t .   ⟺   ∫ 1 + ∞ f ( x ) d x   i s   c o n v e r g e n t \sum_{n=1}^{\infty}{a_n\ is\ convergent.\ \Longleftrightarrow \ \int_1^{+\infty}{f\left( x \right) dx\ is\ convergent}} n=1an is convergent.  1+f(x)dx is convergent
假设 f ( x ) f(x) f(x) 在区间 [ 1 , ∞ ] \left[ 1,\infty \right] [1,]上是递减的正项连续函数. 如果对于所有 n = 1 , 2 , . . . n=1,2,... n=1,2,...都有 a n = f ( n ) a_n=f(n) an=f(n) ,则
∑ n = 1 ∞ a n   收 敛 .   ⟺   ∫ 1 + ∞ f ( x ) d x   收 敛 \sum_{n=1}^{\infty}{a_n\ 收敛.\ \Longleftrightarrow \ \int_1^{+\infty}{f\left( x \right) dx\ 收敛}} n=1an .  1+f(x)dx 

证明

如图所示为 y = f ( x ) y=f(x) y=f(x)的图像
在这里插入图片描述

函数 f ( x ) f(x) f(x)在这个区域的反常积分,即 ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty}{f\left( x \right) dx} 1+f(x)dx,就是绿色区域部分。
使用下黎曼和(lower Riemann sum),如图所示
在这里插入图片描述
易得出
∑ n = 2 ∞ a n ≤ ∫ 1 + ∞ f ( x ) d x \sum_{n=2}^{\infty}{a_n}\leq \int_1^{+\infty}{f\left( x \right) dx} n=2an1+f(x)dx
使用上黎曼和(upper Riemann sum),如图所示
在这里插入图片描述
易得出
∫ 1 + ∞ f ( x ) d x ≤ ∑ n = 1 ∞ a n \int_1^{+\infty}{f\left( x \right) dx}\leq \sum_{n=1}^{\infty}{a_n} 1+f(x)dxn=1an
终上所述
∑ n = 2 ∞ a n ≤ ∫ 1 + ∞ f ( x ) d x ≤ ∑ n = 1 ∞ a n \sum_{n=2}^{\infty}{a_n}\leq \int_1^{+\infty}{f\left( x \right) dx}\leq \sum_{n=1}^{\infty}{a_n} n=2an1+f(x)dxn=1an
根据比较审敛法
若级数  ∑ n = 1 ∞ a n  收敛,则反常积分  ∫ 1 + ∞ f ( x ) d x  收敛 若反常积分    ∫ 1 + ∞ f ( x ) d x    收敛,则级数    ∑ n = 1 ∞ a n    收敛 \text{若级数\ }\sum_{n=1}^{\infty}{a_n}\ \text{收敛,则反常积分\ }\int_1^{+\infty}{f\left( x \right) dx}\ \text{收敛} \\ \text{若反常积分\,\,}\int_1^{+\infty}{f\left( x \right) dx}\,\,\text{收敛,则级数\,\,}\sum_{n=1}^{\infty}{a_n}\,\,\text{收敛} 若级数 n=1an 收敛,则反常积分 1+f(x)dx 收敛若反常积分1+f(x)dx收敛,则级数n=1an收敛

p级数敛散性

由积分审敛法可得
∑ n = 1 ∞ 1 n p  与  ∫ 1 + ∞ 1 x p d x  同敛散 \sum_{n=1}^{\infty}{\frac{1}{n^p}}\ \text{与\ }\int_1^{+\infty}{\frac{1}{x^p}dx}\ \text{同敛散} n=1np1  1+xp1dx 同敛散
(1) 0 < p < 1 0<p<1 0<p<1
∫ 1 + ∞ 1 x p d x = x − p + 1 − p + 1 ∣ 1 + ∞ = lim ⁡ x → + ∞ ( x − p + 1 − p + 1 ) − 1 − p + 1 \int_1^{+\infty}{\frac{1}{x^p}dx}=\left. \frac{x^{-p+1}}{-p+1} \right|_{1}^{+\infty}=\underset{x\rightarrow +\infty}{\lim}\left( \frac{x^{-p+1}}{-p+1} \right) -\frac{1}{-p+1} 1+xp1dx=p+1xp+11+=x+lim(p+1xp+1)p+11
∵ lim ⁡ x → + ∞ ( x − p + 1 − p + 1 ) = + ∞    ∴ ∫ 1 + ∞ 1 x p d x  发散 \because \underset{x\rightarrow +\infty}{\lim}\left( \frac{x^{-p+1}}{-p+1} \right) =+\infty \ \ \therefore \int_1^{+\infty}{\frac{1}{x^p}dx}\ \text{发散} x+lim(p+1xp+1)=+  1+xp1dx 发散
(2) p = 1 p=1 p=1
∫ 1 + ∞ 1 x d x = ln ⁡ x ∣ 1 + ∞  发散 \int_1^{+\infty}{\frac{1}{x}dx}=\ln x\mid_{1}^{+\infty}\ \text{发散} 1+x1dx=lnx1+ 发散
(3) p > 1 p>1 p>1
∫ 1 + ∞ 1 x p d x = x − p + 1 − p + 1 ∣ 1 + ∞ = lim ⁡ x → + ∞ ( x − p + 1 − p + 1 ) − 1 − p + 1 \int_1^{+\infty}{\frac{1}{x^p}dx}=\left. \frac{x^{-p+1}}{-p+1} \right|_{1}^{+\infty}=\underset{x\rightarrow +\infty}{\lim}\left( \frac{x^{-p+1}}{-p+1} \right) -\frac{1}{-p+1} 1+xp1dx=p+1xp+11+=x+lim(p+1xp+1)p+11
∵ lim ⁡ x → + ∞ ( x − p + 1 − p + 1 ) = 0    ∴ ∫ 1 + ∞ 1 x p d x  收敛 \because \underset{x\rightarrow +\infty}{\lim}\left( \frac{x^{-p+1}}{-p+1} \right) =0\ \ \therefore \int_1^{+\infty}{\frac{1}{x^p}dx}\ \text{收敛} x+lim(p+1xp+1)=0  1+xp1dx 收敛
终上所述
当 0 < p ≤ 1 时,级数 ∑ n = 1 ∞ 1 n p 发散,当 p > 1 时,级数 ∑ n = 1 ∞ 1 n p 收敛 \text{当}0<p\leq 1\text{时,级数}\sum_{n=1}^{\infty}{\frac{1}{n^p}}\text{发散,当}p>1\text{时,级数}\sum_{n=1}^{\infty}{\frac{1}{n^p}}\text{收敛} 0<p1时,级数n=1np1发散,当p>1时,级数n=1np1收敛

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值