基于深度学习的古诗生成系统设计与实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于规则与深度学习的古诗生成系统设计与实现

摘要

古诗生成是自然语言处理(NLP)领域的重要研究方向。本文提出了一种结合规则约束与深度学习技术的古诗生成系统,旨在生成符合古诗格律且语义连贯的诗句。系统采用基于模板的规则方法确保格式正确性,并利用深度学习模型(如LSTM或Transformer)提升诗句的语义和意境表达。实验结果表明,该方法在保持古诗规范性的同时,能够生成高质量的诗句。

关键词:古诗生成、规则约束、深度学习、自然语言处理


1. 引言

古诗是中国传统文化的瑰宝,其严格的格律(如平仄、押韵)和丰富的意境对自动生成技术提出了挑战。传统基于规则的方法能保证格式正确,但缺乏灵活性;而纯数据驱动的深度学习方法可能生成不合规范的诗句。因此,本文提出一种混合方法,结合规则与深度学习,以生成既合规又富有诗意的古诗。


2. 相关工作

早期研究主要依赖规则和模板(如《诗律》约束),但生成的诗句缺乏多样性。近年来,深度学习(如RNN、Seq2Seq、GPT)被用于古诗生成,但可能违背格律要求。部分研究尝试结合规则与神经网络,如使用强化学习优化押韵和平仄,但仍存在改进空间。


3. 系统设计

3.1 规则模块

  1. 格律约束:基于五言/七言诗的平仄、押韵规则构建模板。
  2. 词汇库:整理古汉语常用词汇,按词性、意象分类(如“月”“柳”代表离别)。

3.2 深度学习模块

  1. 模型选择:采用Transformer或LSTM作为生成模型,输入为规则模块预处理的诗句骨架。
  2. 训练数据:使用《全唐诗》等语料库进行预训练,微调时结合规则约束优化输出。

3.3 混合生成策略

  1. 规则引导:首先生成符合格律的诗句结构。
  2. 神经网络填充:在约束范围内生成语义连贯的内容。
  3. 后处理优化:使用强化学习或检索增强方法调整诗句质量。

4. 实验与结果

4.1 数据集

实验采用8万首唐诗作为训练集,人工标注平仄和押韵规则。

4.2 评估指标

  • 合规率:诗句符合格律的比例(平仄、押韵)。
  • 人工评分:邀请专家对生成诗句的意境、流畅度评分(1-5分)。

4.3 结果分析

方法合规率人工评分
纯规则方法100%2.8
纯LSTM模型65%3.5
本文混合方法98%4.1

实验表明,混合方法在合规性和诗意表达上均优于单一方法。


5. 结论与展望

本文提出的混合古诗生成系统有效结合了规则与深度学习的优势,生成的诗句既符合传统格律,又具备一定的文学性。未来可引入更强大的预训练模型(如GPT-4)进一步提升生成质量。

参考文献(略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值