基于规则与深度学习的古诗生成系统设计与实现
摘要
古诗生成是自然语言处理(NLP)领域的重要研究方向。本文提出了一种结合规则约束与深度学习技术的古诗生成系统,旨在生成符合古诗格律且语义连贯的诗句。系统采用基于模板的规则方法确保格式正确性,并利用深度学习模型(如LSTM或Transformer)提升诗句的语义和意境表达。实验结果表明,该方法在保持古诗规范性的同时,能够生成高质量的诗句。
关键词:古诗生成、规则约束、深度学习、自然语言处理
1. 引言
古诗是中国传统文化的瑰宝,其严格的格律(如平仄、押韵)和丰富的意境对自动生成技术提出了挑战。传统基于规则的方法能保证格式正确,但缺乏灵活性;而纯数据驱动的深度学习方法可能生成不合规范的诗句。因此,本文提出一种混合方法,结合规则与深度学习,以生成既合规又富有诗意的古诗。
2. 相关工作
早期研究主要依赖规则和模板(如《诗律》约束),但生成的诗句缺乏多样性。近年来,深度学习(如RNN、Seq2Seq、GPT)被用于古诗生成,但可能违背格律要求。部分研究尝试结合规则与神经网络,如使用强化学习优化押韵和平仄,但仍存在改进空间。
3. 系统设计
3.1 规则模块
- 格律约束:基于五言/七言诗的平仄、押韵规则构建模板。
- 词汇库:整理古汉语常用词汇,按词性、意象分类(如“月”“柳”代表离别)。
3.2 深度学习模块
- 模型选择:采用Transformer或LSTM作为生成模型,输入为规则模块预处理的诗句骨架。
- 训练数据:使用《全唐诗》等语料库进行预训练,微调时结合规则约束优化输出。
3.3 混合生成策略
- 规则引导:首先生成符合格律的诗句结构。
- 神经网络填充:在约束范围内生成语义连贯的内容。
- 后处理优化:使用强化学习或检索增强方法调整诗句质量。
4. 实验与结果
4.1 数据集
实验采用8万首唐诗作为训练集,人工标注平仄和押韵规则。
4.2 评估指标
- 合规率:诗句符合格律的比例(平仄、押韵)。
- 人工评分:邀请专家对生成诗句的意境、流畅度评分(1-5分)。
4.3 结果分析
方法 | 合规率 | 人工评分 |
---|---|---|
纯规则方法 | 100% | 2.8 |
纯LSTM模型 | 65% | 3.5 |
本文混合方法 | 98% | 4.1 |
实验表明,混合方法在合规性和诗意表达上均优于单一方法。
5. 结论与展望
本文提出的混合古诗生成系统有效结合了规则与深度学习的优势,生成的诗句既符合传统格律,又具备一定的文学性。未来可引入更强大的预训练模型(如GPT-4)进一步提升生成质量。
参考文献(略)