Spectral Networks and Deep Locally Connected Networks on Graphs
摘要
卷积神经网络是图像和音频识别任务中非常有效的结构,因为能够利用在它们领域的局部平移不变性。 在本文中,我们考虑了将CNN泛化到更一般的域上。 特别是,我们提出了两种构造 一个基于域的分层聚类,另一个基于图Laplacian的谱分解。 我们通过实验表明,对于低维图,可学习的卷积层具有与输入大小无关的参数,从而能够生成高效的深层结构。
通过拉普拉斯谱扩展卷积
直接进入正题,看文章的核心部分,基于图拉普拉斯矩阵谱分解的图卷积。
x(k+1,j)表示第k+1层的输出,它由前k层的输出得到。V是图的拉普拉斯矩阵进行谱分解后,由特征向量构成的矩阵。F(k,i,j)就是第k层的卷积核,h是非线性函数。
结论
由图卷积公式(3.2)可以看出,定义的图卷积依赖于图的拉普拉斯矩阵的分解,F(k,i,j)是第k层的卷积核,就是图卷积神经网络要训练的参数。(要想彻底理解这篇文章,需要用于图论,信号处理,矩阵论的一些基本知识)