图卷积神经网络-第一代GCN

Spectral Networks and Deep Locally Connected Networks on Graphs

论文地址
在这里插入图片描述

摘要

卷积神经网络是图像和音频识别任务中非常有效的结构,因为能够利用在它们领域的局部平移不变性。 在本文中,我们考虑了将CNN泛化到更一般的域上。 特别是,我们提出了两种构造 一个基于域的分层聚类,另一个基于图Laplacian的谱分解。 我们通过实验表明,对于低维图,可学习的卷积层具有与输入大小无关的参数,从而能够生成高效的深层结构。

通过拉普拉斯谱扩展卷积

直接进入正题,看文章的核心部分,基于图拉普拉斯矩阵谱分解的图卷积。
在这里插入图片描述
x(k+1,j)表示第k+1层的输出,它由前k层的输出得到。V是图的拉普拉斯矩阵进行谱分解后,由特征向量构成的矩阵。F(k,i,j)就是第k层的卷积核,h是非线性函数。

结论

由图卷积公式(3.2)可以看出,定义的图卷积依赖于图的拉普拉斯矩阵的分解,F(k,i,j)是第k层的卷积核,就是图卷积神经网络要训练的参数。(要想彻底理解这篇文章,需要用于图论,信号处理,矩阵论的一些基本知识)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值