Unsupervised Learning for Real-World Super-Resolution

这篇论文是19年的一篇通过非成对图像的思想解决超分中采用双三次插值构造数据集训练的网络对真实世界的LR图像泛化能力不强的问题。
在此我用20年最新的非成对图像超分论文与这篇论文进行比较讨论,首先这篇论文与20年的最大区别在于将退化过程与超分过程分开进行训练,因此在这篇论文中退化的学习过程是无标签的,退化过程包含两个可学习的层,一个为G(学习生成真实世界LR图像的过程,即通过对抗向LR图像添加模糊核和噪声),一个为F(学习生成双三次插值得到图像的过程,即通过对抗去噪去模糊的过程),此处px、py、pz分别代表真实世界LR图像分布、真实世界HR图像分布、双三次插值下采样后的LR分布,在这里之所以要添加一个F学习去噪去模糊的过程,是因为退化过程是单独学习的,没有标签依靠,所以添加F从而可以利用循环一致性损失约束网络进行训练,如果可以将超分和退化合成一个进行训练,个人认为只需要利用真实世界的lr图片与生成的lr图片进行对抗即可训练退化过程,而作者之所以将两个模块分开单独训练,是为了防止最后的超分中的损失函数影响退化网络的结果,而在20年的论文中直接将真实世界的lr图像输入了网络并利用对抗约束生成的SR尽量逼近利用真实世界lr图像生成的sr的图像分布,从而很好的解决了超分的损失函数可能会影响退化过程的问题(直接输入真实世界的lr并未使用退化过程)。
在这里插入图片描述在这里插入图片描述
其中本文中的B(双三次插值下采样)就相当于20年论文中的downscale,z相当于y↓,G相当于Gy↓x,X相当于x,F相当于Gxy↓,而两篇论文最大的区别在于19年分块训练而20年联合训练。
这篇论文在训练退化过程中,运用了三个损失,分别为一个循环一致性损失和两个对抗损失,这里主要说明循环一致性损失:
在这里插入图片描述
利用HR双三次插值生成的z,经过G添加噪声和模糊核,后经过F去噪去模糊并与自身(z)进行约束,利用去噪后的z^输入G添加噪声和模糊核,从而构成循环训练退化过程。而超分模块的损失函数较为简单如下:
在这里插入图片描述

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值