【深度学习】—模型优化的各种方法(Relu、RMSProp、Dropout)等

本文介绍了深度学习中模型优化的一些关键方法,包括激活函数的选择,如Sigmoid和ReLU及其优缺点。针对梯度消失和爆炸问题,提出了ReLU作为解决方案,解释了ReLU如何增加非线性表达能力。此外,文章还探讨了优化算法,如Adagrad、Momentum、RMSProp和Adam,以及防止过拟合的Dropout技术。
摘要由CSDN通过智能技术生成

阅读之前看这里👉:博主是一名正在学习数据类知识的学生,在每个领域我们都应当是学生的心态,也不应该拥有身份标签来限制自己学习的范围,所以博客记录的是在学习过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。
博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。

问题的提出

在深度学习的过程中,我们可能出现两种问题,一个问题是模型在训练集上表现不好,另一种问题是模型在测试集上表现不好(过拟合)。

针对这些问题,有什么可以优化的方法呢?

一、模型在测试集上表现不好的优化方法

1.激活函数的选择

神经网络的激活函数其实是将线性转化为非线性的一个函数,在深度学习中常用的激活函数有sigmoid function

1.1 什么是Sigmoid function

一提起Sigmoid function可能大家的第一反应就是Logistic Regression。我们把一个sample扔进 s i g m o i d sigmoid sigmoid中,就可以输出一个probability,也就是是这个sample属于第一类或第二类的概率。 还有像神经网络也有用到 s i g m o i d sigmoid sigmoid,不过在那里叫activation function。Sigmoid function长下面这个样子:
σ ( z ) = 1 1 + e − z \sigma(z)=\frac{1}{1+e^{-z}} σ(z)=1+ez1
其实这个function我们只知道怎么用它,但是不知道它是怎么来的,以及底层的含义是什么。

首先假设我们有两个class:C1C2,并且给出一个sample x x x,我们的目标是求 x x x属于C1的概率是多少。这个概率我们可以通过Naive Bayes很轻松的得出,也就是(公式1):

在这里插入图片描述
其中等号右面的分布这项(公式2):

在这里插入图片描述
x x x出现的概率等于C1出现的概率乘以

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值