关于利用神经网络压缩数据

这里有个简单的构思,记录一下,也欢迎讨论

存储信息存在一定的冗余,大部分信息都是能够压缩

假设 原始数据(A,B,C,D,E...) 是由 隐含的信息 (X, Y, Z) 生成 即 (A,B,C,D,E...) = f(X, Y, Z) 

利用

(A_, B_, C_, D_, E_) = G^-1(G(A,B,C,D,E...)) 

结构的网络

其中

G(A,B,C,D,E...) 输出维数为 3 维 

使得残差 (A_, B_, C_, D_, E_) - (A,B,C,D,E...) 的 mse 最小为目标训练网络

得到 G(A,B,C,D,E...) 即为压缩函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值