Neighbouring Constraint Deep Matrix Factorization for Sequential Multi-view Clustering

7 篇文章 0 订阅
7 篇文章 0 订阅
本文提出了一种深度矩阵分解模型,通过融合特征并利用邻近约束,逐层提取多视图数据的聚类信息,有效提升了多视图聚类的性能,适用于运动分割等应用。模型通过预训练和非负分解策略求解,最后结合谱聚类完成分类。
摘要由CSDN通过智能技术生成

摘要

多视图聚类(MVC)旨在将一组多源数据分割为其潜在的组群。为了提升性能,如何探索更好的表示方法是重要的。在本文中,我们提出了一种具有特征融合的深度矩阵分解模型,用于处理顺序多视图聚类问题。该方法通过逐层嵌入邻近约束来找到每个视图层中的聚类边界信息,并可以获得用于MVC的聚合输出表示。实验证明,所提出的模型极大地提高了聚类性能,并可用于运动分割等应用中。

介绍

为了逐层挖掘更清晰的聚类结构,我们采用结构正则化项[8]的思想,并引入邻近约束来寻找每一层中的聚类边界信息。然后通过分解过程,这种聚类结构将从每个视图中得到增强。最终,我们可以在每个视图中获得一种有效的多样化表示。我们的模型可以表示为:

在这里插入图片描述

其中, ∥ H i ( v ) R ∥ 2 , 1 \left \| H^{(v)}_i R\right \|_{2,1} Hi(v)R 2,1 是结构正则化项。 H i ( v ) = Z i − 1 ( v ) . . . Z m ( v ) H m ( v ) H^{(v)}_i=Z^{(v)}_{i-1} ... Z^{(v)}_{m} H^{(v)}_{m} Hi(v)=Zi1(v)...Zm(v)Hm(v) 表示第 v v v 个视图的第 i i i 层表示,表示第 v v v 个视图的第 i i i个成分。 β \beta β 是一个权衡参数,用于控制正则化项的权重。 α ( v ) \alpha^{(v)} α(v) 是第 v v v 个视图的权重系数。 γ \gamma γ 是控制权重分布的参数。

假设每个视图中邻近点之间存在很高的相似性;距离越近的点,它们的相似性越高,在顺序数据中只有在聚类边界处才会出现突变。在公式(2)中,我们设计了矩阵 R ∈ R n × n − 1 R\in R^{ n\times n-1} RRn×n1,它是一个下三角矩阵,对角线上为 − 1 -1 1,第二条对角线上为 1 1 1

在这里插入图片描述

公式(3)意味着 H R = [ H 2 − H 1 , H 3 − H 2 , . . . , H n − H n − 1 ] HR=[H_2-H_1,H_3-H_2,...,H_n-H_{n-1}] HR=[H2H1,H3H2,...,HnHn1] H R HR HR 的列 如, H n − H n − 1 H_n-H_{n-1} HnHn1 表示相邻点之间的差异,理想情况下,如果 H n − H n − 1 ≈ 0 H_n-H_{n-1}\approx 0 HnHn10,意味着相邻点尽可能相似。给定 k k k 个聚类,理想情况下, H R HR HR 应该只有 k − 1 k - 1 k1 个非零列。因此,我们引入 2 , 1 2,1 2,1-范数来惩罚每列,以寻求共同的聚类结构并保持 H i ( v ) H^{(v)}_i Hi(v) 中的稀疏性。

优化:

由于该模型不是凸优化的,无法获得最优解,只能达到局部最小值。与[4]类似,每个层都进行预训练,以获得第 v v v 个视图中第 i i i 层的变量 Z i ( v ) Z^{(v)}_i Zi(v) H i ( v ) H_i^{(v)} Hi(v) 的初始近似值。将从第 1 1 1 层到第 m m m 层的维度(层大小)标记为 [ p 1 . . . p m ] [p_1 ...p_m] [p1...pm],首先,我们对输入数据矩阵进行分解 X ( v ) ≈ Z 1 ( v ) H 1 ( v ) X^{(v)} \approx Z^{(v)}_1H^{(v)}_1 X(v)Z1(v)H1(v) 进行预训练,然后将第一个特征矩阵 H 1 ( v ) H^{(v)}_1 H1(v) 分解为 Z 2 ( v ) H 2 ( v ) Z^{(v)}_2H^{(v)}_2 Z2(v)H2(v)。依此类推,继续这样做,直到预训练完所有的层。

在这里插入图片描述
更新规则为 H i ( v ) H^{(v)}_i Hi(v)
对于输入数据矩阵 X ( v ) X^{(v)} X(v) ,我们需要解决以下问题:
在这里插入图片描述
由于矩阵 Φ \Phi Φ R R R包含负值,我们将它们分解为两个非负部分,用 M + M^+ M+ 表示将所有负元素替换为 0 0 0 的矩阵,用 M − M^- M表示将所有正元素替换为0的矩阵。在这里插入图片描述
在这里插入图片描述
C. 聚类
通过深度矩阵分解模型进行分解后,多样化表示 H i ( v ) H_i^{(v)} Hi(v)i 从第 v v v 个视图的 m m m 个组件中获取了共同的聚类结构信息。最终的聚合表示 H i ( m ) H_i^{(m)} Hi(m)可以通过将不同视图中的所有 H i ( v ) H_i^{(v)} Hi(v) 进行组合得到。
在这里插入图片描述
在得到表示 H H H 后,通过k-NN算法[15]对建立的图进行谱聚类[10]。

  • 21
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值