奇异值分解(SVD)方法求解最小二乘问题

奇异值分解(SVD)方法求解最小二乘问题

1 奇异值分解(SVD)原理

详解参考:奇异值分解(SVD)方法求解最小二乘问题的原理

1.1 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:

A x = λ x Ax=λx Ax=λx

其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n ,以及这 n 个特征值所对应的特征向量 w 1 , w 2 , . . . , w n λ_1≤λ_2≤...≤λ_n,以及这n个特征值所对应的特征向量 w_1,w_2,...,w_n λ1λ2...λn,以及这n个特征值所对应的特征向量w1,w2,...,wn

,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:

A = W Σ W − 1 A=WΣW^{−1} A=WΣW1

其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。
一般我们会把W的这n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 , 或者说 w i T w i = 1 ||w_i||^2=1 , 或者说 w^T_iw_i=1 ∣∣wi2=1,或者说wiTwi=1

,此时W的n个特征向量为标准正交基,满足 W T W = I , W T = W − 1 也就是说 W 为酉矩阵。 W^TW=I, W^T= W^{−1} 也就是说W为酉矩阵。 WTW=IWT=W1也就是说W为酉矩阵。

这样我们的特征分解表达式可以写成
A = W Σ W T A=WΣW^T A=WΣWT

注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

1.2 SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
A = U Σ V T A=UΣV^T A=UΣVT

其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足 U T U = I , V T V = I 。下图可以很形象的看出上面 S V D 的定义: U^TU = I, V^TV=I。下图可以很形象的看出上面SVD的定义: UTU=IVTV=I。下图可以很形象的看出上面SVD的定义:

1.3 求出SVD分解后的U,Σ,V矩阵

如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 A^TA 。既然A^TA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A T A ) v i = λ i v i (A^TA)v_i=λ_iv_i (ATA)vi=λivi

这样我们就可以得到矩阵 A T A 的 n 个特征值和对应的 n 个特征向量 v 了。将的所有特征向量张成一个 n × n 的矩阵 V ,就是我们 S V D 公式里面的 V 矩阵了。一般我们将 V 中的每个特征向量叫做 A 的右奇异向量。 A^TA 的n个特征值和对应的n个特征向量v了。将的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。 ATAn个特征值和对应的n个特征向量v了。将的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AA^T。既然AA^T是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A A T ) u i = λ i u i (AA^T)u_i=λ_iu_i (AAT)ui=λiui


这样我们就可以得到矩阵 A A T 的 m 个特征值和对应的 m 个特征向量 u 了。将 A A T 的所有特征向量张成一个 m × m 的矩阵 U ,就是我们 S V D 公式里面的 U 矩阵了。一般我们将 U 中的每个特征向量叫做 A 的左奇异向量。 AA^T 的m个特征值和对应的m个特征向量u了。将AA^T的所有特征向量张成一个 m×m 的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。 AATm个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

我们注意到:
A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i / u i A=UΣV^T⇒AV=UΣV^TV⇒AV=UΣ⇒Av_i=σ_iu_i⇒σ_i=Av_i/u_i A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

上面还有一个问题没有讲,就是我们说A^TA的特征向量组成的就是我们SVD中的V矩阵,而 AA^T的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。
A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T A=UΣV^T⇒A^T=VΣ^TU^T⇒A^TA=VΣ^TU^TUΣV^T=VΣ^2V^T A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT

上式证明使用了: U T U = I , Σ T Σ = Σ 2 U^TU = I,Σ^T Σ=Σ^2 UTU=IΣTΣ=Σ2


可以看出 A T A 的特征向量组成的的确就是我们 S V D 中的 V 矩阵。类似的方法可以得到 A A T A^TA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 AA^T ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到AAT

的特征向量组成的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = √ λ i σi=√λ_i σi=λi

这样也就是说,我们可以不用 σ i = A v i / u i 来计算奇异值,也可以通过求出 A T A 的特征值取平方根来求奇异值。 σi=Av_i/u_i来计算奇异值,也可以通过求出A^TA的特征值取平方根来求奇异值。 σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

1.4 SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。
也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T A_{m×n}=U_{m×m}Σ_{m×n}V^T_{n×n}≈U_{m×k}Σ_{k×k}V^T_{k×n} Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT

其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 U m × k , Σ k × k , V k × n T 来表示。 U_{m×k},Σ_{k×k},V^T_{k×n}来表示。 Um×k,Σk×k,Vk×nT来表示。

如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。
在这里插入图片描述

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。

2 线性最小二乘问题

SVD分解及线性最小二乘问题

m i n ∥ A x − b ∥ 2 , A ∈ R m ∗ n , x ∈ R n , b ∈ R m min∥Ax−b∥^2 ,A∈{R^{m∗}}^n ,x∈R^n , b∈R^m minAxb2ARmnxRnbRm

m个方程求解n个未知数,有三种情况:

  1. m=n且A为非奇异,则有唯一解, x = A − 1 b x=A^{−1}b x=A1b
  2. m>n,约束的个数大于未知数的个数,称为超定问题(overdetermined)
  3. m<n,负定/欠定问题(underdetermined)

通常我们遇到的都是超定问题,此时Ax=b的解是不存在的,从而转向解最小二乘问题:

J ( x ) = m i n ∥ A x − b ∥ 2 J(x)=min∥Ax−b∥^2 J(x)=minAxb2

J(x)为凸函数,我们令一阶导数为0,得到: A T A x − A T b = 0 , 称之为正规方程一般解: A^TAx − A^Tb=0 ,称之为正规方程一般解: ATAxATb=0,称之为正规方程一般解:

x = ( A T A ) − 1 A T b x={(A^TA)}^{−1}A^Tb x=(ATA)1ATb

奇异值分解与线性最小二乘问题

AX=b

通常我们遇到的都是超定问题 m>n
在这里插入图片描述

AX=0

齐次方程组(超定方程组)的最小二乘解,及利用其拟合空间平面

特殊情况:齐次线性方程Ax=0 A的行数大于列数

这时实际上是没有真正的非零解析解的,因为约束太多了,没法都满足(零向量除外)。但是可以折中一下,每一个方程都满足个大概,这就要求最小二乘解
求取最小二乘解的方法一般使用SVD,即奇异值分解。

理论推导部分
齐次方程组形如: A x = 0 Ax=0 Ax=0


在一些优化,拟合等问题中经常出现,我们常考虑方程多于未知数元数的情况------超定方程组。

首先对于平凡解x=0我们一般不感兴趣,一般我们会寻求方程组的非零解。

如果x是方程组的一个解,那么对于 V k ∈ R , k x 也是齐次方程组的解,一个合理的假设是只求满足∥ x ∥ = 1 的解。 Vk\in R ,kx 也是齐次方程组的解,一个合理的假设是只求满足∥x∥=1的解。 VkRkx也是齐次方程组的解,一个合理的假设是只求满足x=1的解。

假设A的维数是m×n,一般的m>n(超定),那么方程组存在精确解的条件是rank(A)即矩阵A列不满秩。当没有精确解的时候(rank(A) = n, A列满秩),我们通常求其最小二乘解,描述为:

求使||Ax||最小化并满足||x||=1的x

先介绍一个引理,即对于一个酉阵或半酉阵 p ( P T P = I ) 和一个向量 x ( 向量维数等于 P 列数 ) ,有: p(P^{^{T}}P = I) 和一个向量x(向量维数等于P列数),有: p(PTP=I)和一个向量x(向量维数等于P列数),有:

∥ x ∥ 2 = x T x = x T ( p T p ) ) x = ∥ p x ∥ 2 \left \| x \right \|_{2}=\sqrt{x^{T}x}=\sqrt{x^{T}(p^{T}p))x}=\left \| px \right \|_{2} x2=xTx =xT(pTp))x =px2

将A进行奇异值分解,令:

A = U D V T A=UDV^{^{T}} A=UDVT

其中U和V为半酉阵,分别满足

U T U = I , V V T = I U^{T}U= I, VV^{T}=I UTU=I,VVT=I

则:

∥ A x ∥ = ∥ U D V T x ∥ = ∥ D V T x ∥ \left \| Ax \right \|=\left \| UDV^{T}x \right \|=\left \| DV^{T}x \right \| Ax= UDVTx = DVTx

另,若令:

y = V T x y=V^{T}x y=VTx

则问题等效成求使||Dy||最小化并满足||y||=1的y

需要说明的是对于当前问题,A列满秩,则D是对角阵,V是酉阵(方阵)

在奇异值分解中D的对角线元素是递减排列的,那么只需去取y=(0,0,…0,1),则;

∥ A x ∥ = ∥ D y ∥ = σ n , σ n 是 A 最小的奇异值 \left \|Ax \right \|=\left \| Dy \right \|=\sigma _{n},\sigma _{n} 是A最小的奇异值 Ax=Dy=σnσnA最小的奇异值

此时:

x = V y x=Vy x=Vy

即x为V矩阵的最后一列,在此题背景下x为 A T A 的最小特征值对应的单位特征向量。 A^TA 的最小特征值对应的单位特征向量。 ATA的最小特征值对应的单位特征向量。

3 奇异值分解(SVD) — 几何意义

具体内容看这里:奇异值分解(SVD) — 几何意义
以下只做简单总结

M = U Σ V T = u 1 σ 1 v 1 T + u 2 σ 2 v 2 T M = UΣV^T= u_1σ_1 v_1^T + u_2σ_2 v_2^T M=UΣVT=u1σ1v1T+u2σ2v2T

U 矩阵的列向量分别是 u_1,u_2, Σ 是一个对角矩阵,对角元素分别是对应的 σ1 和σ2 ,V矩阵的列向量分别是v_1,v_2。上角标T表示矩阵V的转置。

这就表明任意的矩阵M是可以分解成三个矩阵。V表示了原始域的标准正交基,u表示经过 M变换后的co-domain的标准正交基,Σ表示了V中的向量与u中相对应向量之间的关系。

应用实例(Another example)

  1. 矩阵M的秩的大小等于矩阵M经过奇异值分解后非零奇异值的个数。

  2. 对图像像素矩阵SVD分解可以对图像减噪(noise reduction)

  3. 对采集的数据进行SVD分解可以保留主要样本

  • 6
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值