自动控制理论(3):线性系统的根轨迹法

自动控制理论:根轨迹法

根轨迹:系统某一参数由 0 → ∞ 0→\infty 0变化时,闭环特征根 λ \lambda λ在s平面相应变化所描绘出来的轨迹

一个系统的首1标准型如下
G ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) G(s)=\frac{K^{*} \prod\limits_{j=1}^{m}\left(s-z_{j}\right)}{\prod\limits_{i=1}^{n}\left(s-p_{i}\right)} G(s)=i=1n(spi)Kj=1m(szj)

开环传递函数的 K ∗ K^* K称为根轨迹增益(闭环传递函数没有根轨迹增益的概念)
K = K ∗ ∏ i = 1 m ∣ − z i ∣ ∏ j = 1 n ∣ − p j ∣ \mathrm{K}=\frac{\mathrm{K}^{*} \prod\limits_{\mathrm{i}=1}^{\mathrm{m}}\left|-\mathrm{z}_{\mathrm{i}}\right|}{\prod\limits_{\mathrm{j}=1}^{\mathrm{n}}\left|-\mathrm{p}_{\mathrm{j}}\right|} K=j=1npjKi=1mzi

 

假设一个系统 G ( s ) = K 1 ∗ B 1 ( s ) A 1 ( s ) , H ( s ) = K 2 ∗ B 2 ( s ) A 2 ( s ) G(s)=\frac{K_1^{*} B_1(s)}{A_1(s)},H(s)=\frac{K_2^{*} B_2(s)}{A_2(s)} G(s)=A1(s)K1B1(s),H(s)=A2(s)K2B2(s)

则开环传递函数为
G ( s ) H ( s ) = K 1 ∗ K 2 ∗ B 1 ( s ) B 2 ( s ) A 1 ( s ) A 2 ( s ) G(s)H(s)=\frac{K_1^{*}K_2^{*} B_1(s)B_2(s)}{A_1(s)A_2(s)} G(s)H(s)=A1(s)A2(s)K1K2B1(s)B2(s)
根轨迹增益 K ∗ = K 1 ∗ K 2 ∗ K^*=K_1^*K_2^* K=K1K2

开环传递函数的零点,是前向通道的零点和反馈通道的零点

开环传递函数的极点,是前向通道的极点和反馈通道的极点

开环传递函数的根轨迹增益和开环增益对特定传函差一个比例系数

闭环传递函数为
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = K 1 ∗ B 1 ( s ) A 1 ( s ) 1 + K 1 ∗ K 2 ∗ B 1 ( s ) B 2 ( s ) A 1 ( s ) A 2 ( s ) \Phi(s) = \frac{G(s)}{1+G(s)H(s)}=\frac{\frac{K_1^{*} B_1(s)}{A_1(s)}}{1+\frac{K_1^{*}K_2^{*} B_1(s)B_2(s)}{A_1(s)A_2(s)}} Φ(s)=1+G(s)H(s)G(s)=1+A1(s)A2(s)K1K2B1(s)B2(s)A1(s)K1B1(s)

= K 1 ∗ B 1 ( s ) A 2 ( s ) A 1 ( s ) A 2 ( s ) + K 1 ∗ K 2 ∗ B 1 ( s ) B 2 ( s ) =\frac{K_1^{*} B_1(s)A_2(s)}{A_1(s)A_2(s)+{K_1^{*}K_2^{*} B_1(s)B_2(s)}} =A1(s)A2(s)+K1K2B1(s)B2(s)K1B1(s)A2(s)

= K 1 ∗ B 1 ( s ) A 2 ( s ) A 1 ( s ) A 2 ( s ) + K ∗ B 1 ( s ) B 2 ( s ) =\frac{K_1^{*} B_1(s)A_2(s)}{A_1(s)A_2(s)+{K^{*} B_1(s)B_2(s)}} =A1(s)A2(s)+KB1(s)B2(s)K1B1(s)A2(s)

闭环传递函数的零点是前向通道的零点和反馈通道的极点,与根轨迹增益无关,不受根轨迹增益变化的影响

闭环传递函数的极点是特征方程的根,受根轨迹增益 K ∗ K^* K影响,闭环极点随着根轨迹增益的变化而变化

闭环极点和开环零点、开环极点、根轨迹增益 K ∗ K^* K均有关

因此不必研究闭环零点受根轨迹增益变化的影响,只需研究闭环极点受根轨迹增益变化的影响即可

讨论根轨迹增益 K ∗ K^* K从0到 ∞ \infty 变化产生的闭环特征根的轨迹称为普通根轨迹

其他参数变化时系统的根轨迹,称为参数根轨迹

 

普通根轨迹

180°根轨迹

而对一个系统而言,闭环特征方程为
1 + G ( s ) H ( s ) = 0 1+G(s)H(s)=0 1+G(s)H(s)=0

G ( s ) H ( s ) = − 1 G(s)H(s)=-1 G(s)H(s)=1
该方程称为根轨迹方程

写成零极点形式即
G ( s ) H ( s ) = K ⋆ ( s − z 1 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) = − 1 \begin{aligned} &G(s) H(s)=\frac{\boldsymbol{K}^{\star}\left(s-\boldsymbol{z}_{1}\right) \cdots\left(s-\boldsymbol{z}_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}=\frac{\boldsymbol{K}^{*} \prod\limits_{i=1}^{m}\left(s-\boldsymbol{z}_{i}\right)}{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)} =-1 \end{aligned} G(s)H(s)=(sp1)(sp2)(spn)K(sz1)(szm)=j=1n(spj)Ki=1m(szi)=1
由于该方程是一个复方程,因此可以写为以下两个方程
∣ G ( s ) H ( s ) ∣ = K ∗ ∣ s − z 1 ∣ ⋯ ∣ s − z m ∣ ∣ s − p 1 ∣ ∣ s − p 2 ∣ ⋯ ∣ s − p n ∣ = K ∗ ∏ i = 1 m ∣ ( s − z i ) ∣ ∏ j = 1 n ∣ ( s − p j ) ∣ = 1 ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = ( 2 k + 1 ) π \begin{aligned} &|G(s) H(s)|=\frac{\boldsymbol{K}^{*}\left|s-\boldsymbol{z}_{1}\right| \cdots\left|s-\boldsymbol{z}_{m}\right|}{\left|s-\boldsymbol{p}_{1}\right|\left|s-\boldsymbol{p}_{2}\right| \cdots\left|s-p_{n}\right|}=\boldsymbol{K}^{*} \frac{\prod\limits_{i=1}^{m}\left|\left(s-\boldsymbol{z}_{i}\right)\right|}{\prod\limits_{j=1}^{n}\left|\left(s-\boldsymbol{p}_{j}\right)\right|}=1 \\ &\angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=(2 \boldsymbol{k}+1) \pi \end{aligned} G(s)H(s)=sp1sp2spnKsz1szm=Kj=1n(spj)i=1m(szi)=1G(s)H(s)=i=1m(szi)j=1n(spj)=(2k+1)π
分别称为幅值条件和相角条件,复平面上的点如果同时满足这两个条件,则为根轨迹上的点

由于根轨迹增益 K ∗ K^* K是从0到 ∞ \infty 变化的,因此,幅值条件一定有一个 K ∗ K^* K可以满足,所以只需要满足相角条件就一定是根轨迹上的点了

相角条件是s点位于根轨迹上的充要条件,幅值条件用于确定该点对应的 K ∗ K^* K

 

根轨迹的绘制法则

  1. 根轨迹的起点和终点

    研究的是根轨迹增益 K ∗ K^* K从0变化到 ∞ \infty 闭环特征根的轨迹,

    因此 K ∗ = 0 K^*=0 K=0时的特征根位置称为根轨迹起点, K ∗ = ∞ K^*=\infty K=时的特征根位置称为根轨迹终点

    起点满足
    K ∗ = ∣ s − p 1 ∣ ⋯ ∣ s − p n ∣ ∣ s − z 1 ∣ ⋯ ∣ s − z m ∣ = 0 \boldsymbol{K}^{*}=\frac{\left|s-p_{1}\right| \cdots\left|s-p_{n}\right|}{\left|s-z_{1}\right| \cdots\left|s-z_{m}\right|}=0 K=sz1szmsp1spn=0
    因此开环极点 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_{n} p1,p2,,pn是根轨迹的起点

     

    终点满足
    K ∗ = ∣ s − p 1 ∣ ⋯ ∣ s − p n ∣ ∣ s − z 1 ∣ ⋯ ∣ s − z m ∣ = s n − m ∣ 1 − p 1 s ∣ ⋯ ∣ 1 − p n s ∣ ∣ 1 − z 1 s ∣ ⋯ ∣ 1 − z m s ∣ = ∞ \boldsymbol{K}^{*}=\frac{\left|s-p_{1}\right| \cdots\left|s-p_{n}\right|}{\left|s-z_{1}\right| \cdots\left|s-z_{m}\right|}=\frac{s^{n-m}\left|1-\frac{p_{1}}{s}\right| \cdots\left|1-\frac{p_{n}}{s}\right|}{\left|1-\frac{z_{1}}{s}\right| \cdots\left|1-\frac{z_{m}}{s}\right|}=\infty K=sz1szmsp1spn=1sz11szmsnm1sp11spn=

    { s = z j , j = 1 , 2 , ⋯ m s = ∞ , n > m \begin{cases}s=z_{j}, & j=1,2, \cdots m \\ s=\infty, & n>m\end{cases} {s=zj,s=,j=1,2,mn>m
    因此开环零点和无穷大是根轨迹的终点

     

    根轨迹起始于开环极点,终止于开环零点:如果开环极点个数n大于开环零点个数m,则有n-m条根轨迹终止于无穷远处。

     

     

  2. 根轨迹的分支数,对称性和连续性

    由于根轨迹的起点是开环极点,而有几个起点根轨迹就会有几个分支,所以根轨迹的分支数=开环极点数

    由上述可知闭环特征方程为 A 1 ( s ) A 2 ( s ) + K ∗ B 1 ( s ) B 2 ( s ) = 0 A_1(s)A_2(s)+{K^{*} B_1(s)B_2(s)}=0 A1(s)A2(s)+KB1(s)B2(s)=0,其中 A 1 ( s ) A 2 ( s ) A_1(s)A_2(s) A1(s)A2(s)是开环传函的分母, B 1 ( s ) B 2 ( s ) B_1(s)B_2(s) B1(s)B2(s)是开环传函的分子,而分子阶数小于等于分母,因此开环传函的分母阶数,即开环极点数,即闭环传函的分母阶数,即闭环特征方程的阶数

    所以根轨迹的分支数=闭环特征方程的阶数

     

    实际系统的特征方程一定是实系数的,不可能是复系数的,实系数方程的根要么是实根,要么是共轭复根,所以根轨迹一定对称于实轴,且连续变化

     

  3. 实轴上的根轨迹

    判断在实轴上的点s是否是根轨迹上的点,即判断该点是否满足相角条件
    ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = ( 2 k + 1 ) π \angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=(2 \boldsymbol{k}+1) \pi G(s)H(s)=i=1m(szi)j=1n(spj)=(2k+1)π
    对于实轴上的点而言,不在实轴上的零点或极点是共轭出现的,对其相角条件的影响抵消了,所以只有实轴上的点对其相角条件有影响

    而在实轴上s点左侧的零极点, ∠ ( s − z i ) \angle\left(s-\boldsymbol{z}_{i}\right) (szi) ∠ ( s − p j ) \angle\left(s-p_{j}\right) (spj)为0,因此实轴上左侧的零极点也对相角条件无影响

    在实轴上s点右侧的零极点, ∠ ( s − z i ) \angle\left(s-\boldsymbol{z}_{i}\right) (szi) ∠ ( s − p j ) \angle\left(s-p_{j}\right) (spj)为π,因此右侧有奇数个,相角条件就满足,右侧有偶数个,相角条件就不满足

    所以:从实轴上最右端的开环零、极点算起,奇数开环零极点到偶数开环零、极点之间的区域必是根轨迹,否则一定不是根轨迹

  4. 根之和

    因为闭环特征方程为 A 1 ( s ) A 2 ( s ) + K ∗ B 1 ( s ) B 2 ( s ) = ∏ i = 1 n ( s − λ i ) = 0 A_1(s)A_2(s)+{K^{*} B_1(s)B_2(s)}=\prod\limits_{i=1}^{n}\left(s-\lambda_{i}\right)=0 A1(s)A2(s)+KB1(s)B2(s)=i=1n(sλi)=0

    其中 A 1 ( s ) A 2 ( s ) A_1(s)A_2(s) A1(s)A2(s)是开环传函的分母,阶数为n, B 1 ( s ) B 2 ( s ) B_1(s)B_2(s) B1(s)B2(s)是开环传函的分子,阶数为m

    假如 n − m ≥ 2 n-m \ge 2 nm2时,特征方程中最高阶的两项即 s n , s n − 1 s^n,s^{n-1} sn,sn1不受和根轨迹增益影响,只由分母决定

    s n s^n sn是由每一个因式 ( s − λ i ) (s-\lambda_i) (sλi)中的s相乘得到的,系数为1

    s n − 1 s^{n-1} sn1是由n-1个因式 ( s − λ i ) (s-\lambda_i) (sλi)中的s和一个因式的 − λ i -\lambda_i λi相乘相加得到的,系数为 − ∑ i = 1 m λ i -\sum\limits_{i=1}^{m} \lambda_{i} i=1mλi

    因此当开环传函的分母定了, s n , s n − 1 s^n,s^{n-1} sn,sn1的系数也就定了,所有特征根的和也就定了

    特征根会随着根轨迹增益的大小变化而改变,但是其和不变
    ∑ i = 1 m λ i = C ( n − m > 2 ) \sum_{i=1}^{m} \lambda_{i}=C \quad(n-m>2) i=1mλi=C(nm>2)
    如果随着根轨迹增益变化,一部分根轨迹往左,则另一部分根轨迹一定往右,总移动量为0

     

  5. 渐近线

    根据上文可知,当n>m时,有n-m支根轨迹的终点在 ∞ \infty

    当其趋于无穷时,由于距离所有的零极点都过远,所以零极点之间的距离和相对夹角均可以忽略不计,

    可以通过一个重心 σ a \sigma_a σa来近似所有的零极点,则根轨迹方程
    G ( s ) H ( s ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) = − 1 G(s) H(s)=\frac{\boldsymbol{K}^{*} \prod\limits_{i=1}^{m}\left(s-\boldsymbol{z}_{i}\right)}{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)} =-1 G(s)H(s)=j=1n(spj)Ki=1m(szi)=1

    可以近似为
    ∏ j = 1 n ( s − p j ) ∏ i m ( s − z i ) = − K ∗ ≈ ( s − σ a ) n − m = s n − m − σ a ( n − m ) s n − m − 1 + ⋯ \begin{aligned} &\frac{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)}{\prod\limits_{i}^{m}\left(s-z_{i}\right)}=-K^{*}\approx\left(s-\sigma_{a}\right)^{n-m}=s^{n-m}-\sigma_{a}(n-m) s^{n-m-1}+\cdots \end{aligned} im(szi)j=1n(spj)=K(sσa)nm=snmσa(nm)snm1+

    最左侧的表达式可以化为
    ∏ j = 1 n ( s − p j ) ∏ i = 1 m ( s − z i ) = s n − ( ∑ j = 1 n p j ) s n − 1 + ⋯ s m − ( ∑ i = 1 m z i ) s m − 1 + ⋯ \frac{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)}{\prod\limits_{i=1}^{m}\left(s-z_{i}\right)}= \frac{s^{n}-\left(\sum\limits_{j=1}^{n} p_{j}\right) s^{n-1}+\cdots} {s^{m}-\left(\sum\limits_{i=1}^{m} z_{i}\right) s^{m-1}+\cdots} i=1m(szi)j=1n(spj)=sm(i=1mzi)sm1+sn(j=1npj)sn1+
    利用多项式除法,可以得出上式的因式第一项为 s n − m s^{n-m} snm,被除多项式减去该项乘以除式后变为
    s n − ( ∑ j = 1 n p j ) s n − 1 + ⋯ − s n − m [ s m − ( ∑ i = 1 m z i ) s m − 1 + ⋯   ] = − [ ( ∑ j = 1 n p j ) − ( ∑ i = 1 m z i ) ] s n − 1 + ⋯ \begin{array}{l} s^{n}-\left(\sum\limits_{j=1}^{n} p_{j}\right) s^{n-1}+\cdots-s^{n-m}\left[s^{m}-\left(\sum\limits_{i=1}^{m} z_{i}\right) s^{m-1}+\cdots\right]\\ =-\left[\left(\sum\limits_{j=1}^{n} p_{j}\right)-\left(\sum\limits_{i=1}^{m} z_{i}\right)\right]s^{n-1}+\cdots \end{array} sn(j=1npj)sn1+snm[sm(i=1mzi)sm1+]=[(j=1npj)(i=1mzi)]sn1+
    该式继续除以除式可以得出商式的第二项为
    − ( ∑ j = 1 n p j − ∑ i = 1 m z i ) s n − m − 1 -\left(\sum_{j=1}^{n} p_{j}-\sum_{i=1}^{m} z_{i}\right) s^{n-m-1} (j=1npji=1mzi)snm1
    因此
    ∏ j = 1 n ( s − p j ) ∏ i = 1 m ( s − z i ) = s n − ( ∑ j = 1 n p j ) s n − 1 + ⋯ s m − ( ∑ i = 1 m z i ) s m − 1 + ⋯ = s n − m − ( ∑ j = 1 n p j − ∑ i = 1 m z i ) s n − m − 1 + ⋯ \frac{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)}{\prod\limits_{i=1}^{m}\left(s-z_{i}\right)}= \frac{s^{n}-\left(\sum\limits_{j=1}^{n} p_{j}\right) s^{n-1}+\cdots} {s^{m}-\left(\sum\limits_{i=1}^{m} z_{i}\right) s^{m-1}+\cdots}=s^{n-m}-\left(\sum_{j=1}^{n} p_{j}-\sum_{i=1}^{m} z_{i}\right) s^{n-m-1}+\cdots i=1m(szi)j=1n(spj)=sm(i=1mzi)sm1+sn(j=1npj)sn1+=snm(j=1npji=1mzi)snm1+
    由于利用重心得到的近似式如下
    ∏ j = 1 n ( s − p j ) ∏ i m ( s − z i ) = − K ∗ = ( s − σ a ) n − m = s n − m − σ a ( n − m ) s n − m − 1 + ⋯ \begin{aligned} &\frac{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)}{\prod\limits_{i}^{m}\left(s-z_{i}\right)}=-K^{*}=\left(s-\sigma_{a}\right)^{n-m}=s^{n-m}-\sigma_{a}(n-m) s^{n-m-1}+\cdots \end{aligned} im(szi)j=1n(spj)=K=(sσa)nm=snmσa(nm)snm1+
    为使最高两项的系数相等,
    ( ∑ j = 1 n p j − ∑ i = 1 m z i ) = σ a ( n − m ) \left(\sum_{j=1}^{n} p_{j}-\sum_{i=1}^{m} z_{i}\right)=\sigma_{a}(n-m) (j=1npji=1mzi)=σa(nm)
    由此可知,近似重心的位置为
    σ a = ∑ i = 1 n p i − ∑ j = 1 m z i n − m \sigma_{a}=\frac{\sum\limits_{i=1}^{n} p_{i}-\sum\limits_{j=1}^{m} z_{i}}{n-m} σa=nmi=1npij=1mzi
    由于零极点关于实轴对称,相加之后虚部抵消,近似重心一定落在实轴上

    当根轨迹趋于无穷远的时候,其相对零极点的夹角也可以近似用其相对重心的夹角 φ a \varphi_a φa来表示,则相角条件可以近似写为
    ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = m φ a − n φ a = ( m − n ) φ a = − ( 2 k + 1 ) π \sum\limits_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum\limits_{j=1}^{n} \angle\left(s-p_{j}\right)=m \varphi_{a}-n \varphi_{a}=(m-n) \varphi_{a}=-(2 k+1) \pi i=1m(szi)j=1n(spj)=mφanφa=(mn)φa=(2k+1)π
    所以 φ a \varphi_a φa需要满足 φ a = ( 2 k + 1 ) π n − m \varphi_{a}=\frac{(2 k+1) \pi}{n-m} φa=nm(2k+1)π

    由此,在实轴上一点 σ a \sigma_a σa处,作一条与正实轴夹角为 φ a \varphi_a φa的射线,当满足以下式子时,该射线为根轨迹趋于无穷远时的渐近线,其中 φ a \varphi_a φa可以从 0 0 0取到 n − m − 1 n-m-1 nm1,共 n − m n-m nm条射线,若取 n − m n-m nm,则会和取 0 0 0时对应的相角相同。 n − m n-m nm条射线刚好对应 n − m n-m nm个在无穷的根轨迹终点

    { σ a = ∑ i = 1 n p i − ∑ j = 1 m z i n − m φ a = ( 2 k + 1 ) π n − m \left\{\begin{array}{l} \sigma_{a}=\frac{\sum\limits_{i=1}^{n} p_{i}-\sum\limits_{j=1}^{m} z_{i}}{n-m} \\\\ \varphi_{a}=\frac{(2 k+1) \pi}{n-m} \end{array}\right. σa=nmi=1npij=1mziφa=nm(2k+1)π
     

  6. 分离点与分离角

    实轴上的极点是根轨迹的起始点,零点是根轨迹的终点,因此,如果实轴上相邻的零点或相邻的极点之间满足实轴上存在根轨迹的条件,则根轨迹一定会从其间的某一点进入或离开实轴,该点称为分离点

     

    分离点的本质是多支根轨迹在同一处相交,即在该点处有重根

    (1)重根法

    利用特征多项式在n重根处的n阶导数为0可以得到方程组

    如果是2重根,即两条根轨迹的分离点,则方程组如下
    { D ( s ) = A ( s ) + K ∗ B ( s ) = 0 d D ( s ) d s = d A ( s ) d s + K ∗ d B ( s ) d s = 0 \left\{\begin{aligned} &D(s)=A(s)+K^* B(s)=0 \\\\ &\frac{d D(s)}{d s}=\frac{d A(s)}{d s}+K^* \frac{d B(s)}{d s}=0 \end{aligned}\right. D(s)=A(s)+KB(s)=0dsdD(s)=dsdA(s)+KdsdB(s)=0
    可以直接计算得分离点s和此时的 K ∗ K^* K

    也可以由该公式推得以下公式
    ∑ i = 1 n 1 d − p i = ∑ j = 1 m 1 d − z j \sum_{i=1}^{n} \frac{\mathbf{1}}{d-\boldsymbol{p}_{i}}=\sum_{j=1}^{m} \frac{\mathbf{1}}{d-\boldsymbol{z}_{j}} i=1ndpi1=j=1mdzj1
    其中d为分离点

    (2)极值法

    分离点处的 K ∗ K^* K值是实轴上根轨迹对应 K ∗ K^* K值的最值。

    因此可以列如下方程组
    { d K ∗ d s = d d s [ − A ( s ) B ( s ) ] = 0 D ( s ) = A ( s ) + K ∗ B ( s ) = 0 \left\{\begin{aligned} &\frac{d K^*}{d s}=\frac{d}{d s}\left[-\frac{A(s)}{B(s)}\right]=0 \\\\ &D(s)=A(s)+K^* B(s)=0 \end{aligned}\right. dsdK=dsd[B(s)A(s)]=0D(s)=A(s)+KB(s)=0
    求解得分离点s和此时的 K ∗ K^* K

     

    得到分离点后,为了绘制根轨迹还需要计算根轨迹在该点处进入或离开实轴的角度,即分离角
    分 离 角 = ( 2 l + 1 ) π 进 入 并 立 即 离 开 分 离 点 的 根 轨 迹 分 支 数 分离角=\frac{(2l+1)\pi}{进入并立即离开分离点的根轨迹分支数} =(2l+1)π
    l从0到(进入并立即离开分离点的根轨迹分支数-1)变化,对应l个进入或离开的角度

  7. 与虚轴交点

    (1)根轨迹与虚轴相交时,即为纯虚根,系统临界稳定,可以根据劳斯稳定判据,判断临界稳定时根轨迹增益的取值,判断与虚轴交点的位置(使劳斯表中出现全零行)

    (2)将根设为 j ω j\omega jω带入特征方程求解(阶数低的时候可以使用)

  8. 起始角和终止角

    即起始点(极点)处的根轨迹角度和终止点(零点)处的根轨迹角度

    即将极点和零点带入相角条件计算即可
    ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = ( 2 k + 1 ) π \angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=(2 \boldsymbol{k}+1) \pi G(s)H(s)=i=1m(szi)j=1n(spj)=(2k+1)π
    例如计算极点 p 1 p_1 p1处的起始角

    假定 K ∗ K^* K无穷小,则在 p 1 p_1 p1处产生的根轨迹与 p 1 p_1 p1之间的距离无穷小,所以其他零极点与此处根轨迹的夹角 ∠ ( s − z i ) \angle\left(s-\boldsymbol{z}_{i}\right) (szi) ∠ ( s − p j ) \angle\left(s-p_{j}\right) (spj)即与 p 1 p_1 p1的夹角 ∠ ( p 1 − z i ) \angle\left(p_1-\boldsymbol{z}_{i}\right) (p1zi) ∠ ( p 1 − p j ) \angle\left(p_1-p_{j}\right) (p1pj),而根轨迹与 p 1 p_1 p1本身的夹角即为起始角 θ p 1 \theta_{p1} θp1

    带入相角条件
    ∑ i = 1 m ∠ ( p 1 − z i ) − ∑ j = 2 n ∠ ( p 1 − p j ) − θ p 1 = ( 2 k + 1 ) π \sum_{i=1}^{m} \angle\left(p_1-\boldsymbol{z}_{i}\right)-\sum_{j=2}^{n} \angle\left(p_1-p_{j}\right) - \theta_{p1}=(2 \boldsymbol{k}+1) \pi i=1m(p1zi)j=2n(p1pj)θp1=(2k+1)π

    θ p 1 = ( 2 k + 1 ) π + ∑ i = 1 m ∠ ( p 1 − z i ) − ∑ j = 2 n ∠ ( p 1 − p j ) \theta_{p1}=(2 \boldsymbol{k}+1) \pi + \sum_{i=1}^{m} \angle\left(p_1-\boldsymbol{z}_{i}\right)-\sum_{j=2}^{n} \angle\left(p_1-p_{j}\right) θp1=(2k+1)π+i=1m(p1zi)j=2n(p1pj)
    计算其他起始点终止点方法同理

定理:

  1. 若系统有2个开环极点,1个开环零点,且在复平面存在根轨迹,则复平面的根轨迹一定是以该零点为圆心的圆弧。
  2. 若开环零极点均为偶数个,且关于一条平行于虚轴的直线左右对称分布,则根轨迹一定关于该直线左右对称。

 

广义根轨迹

参数根轨迹

参数根轨迹绘制步骤如下:

  1. 首先根据系统列出特征方程
  2. 根据特征方程,构造等效开环传递函数,将变参数放在分子上,由此其根轨迹增益和参数有线性对应的关系
  3. 由等效开环传递函数绘制根轨迹,变参数对特征根的影响的分析方法和普通根轨迹的分析方法相同

注意:等效开环传递函数只是特征根和原传递函数一样,不是等价,仅为了分析特征根构造

 

0°根轨迹

加入系统实质上处于正反馈,则系统闭环传递函数和开环传递函数之间的关系发生变化
Φ ( s ) = G ( s ) 1 − G ( s ) H ( s ) \Phi(s)=\frac{G(s)}{1-G(s) H(s)} Φ(s)=1G(s)H(s)G(s)
因此系统特征方程不再是 1 + G ( s ) H ( s ) 1+G(s)H(s) 1+G(s)H(s),而是 1 − G ( s ) H ( s ) 1-G(s)H(s) 1G(s)H(s)

原来180°根轨迹的根轨迹方程为 G ( s ) H ( s ) = − 1 G(s)H(s)=-1 G(s)H(s)=1

写成零极点形式即
G ( s ) H ( s ) = K ⋆ ( s − z 1 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) = − 1 \begin{aligned} &G(s) H(s)=\frac{\boldsymbol{K}^{\star}\left(s-\boldsymbol{z}_{1}\right) \cdots\left(s-\boldsymbol{z}_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}=\frac{\boldsymbol{K}^{*} \prod\limits_{i=1}^{m}\left(s-\boldsymbol{z}_{i}\right)}{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)} =-1 \end{aligned} G(s)H(s)=(sp1)(sp2)(spn)K(sz1)(szm)=j=1n(spj)Ki=1m(szi)=1
幅值条件、相角条件如下
∣ G ( s ) H ( s ) ∣ = K ∗ ∣ s − z 1 ∣ ⋯ ∣ s − z m ∣ ∣ s − p 1 ∣ ∣ s − p 2 ∣ ⋯ ∣ s − p n ∣ = K ∗ ∏ i = 1 m ∣ ( s − z i ) ∣ ∏ j = 1 n ∣ ( s − p j ) ∣ = 1 ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = ( 2 k + 1 ) π \begin{aligned} &|G(s) H(s)|=\frac{\boldsymbol{K}^{*}\left|s-\boldsymbol{z}_{1}\right| \cdots\left|s-\boldsymbol{z}_{m}\right|}{\left|s-\boldsymbol{p}_{1}\right|\left|s-\boldsymbol{p}_{2}\right| \cdots\left|s-p_{n}\right|}=\boldsymbol{K}^{*} \frac{\prod\limits_{i=1}^{m}\left|\left(s-\boldsymbol{z}_{i}\right)\right|}{\prod\limits_{j=1}^{n}\left|\left(s-\boldsymbol{p}_{j}\right)\right|}=1 \\ &\angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=(2 \boldsymbol{k}+1) \pi \end{aligned} G(s)H(s)=sp1sp2spnKsz1szm=Kj=1n(spj)i=1m(szi)=1G(s)H(s)=i=1m(szi)j=1n(spj)=(2k+1)π
 

0°根轨迹的根轨迹方程变为 G ( s ) H ( s ) = 1 G(s)H(s)=1 G(s)H(s)=1

写成零极点形式即
G ( s ) H ( s ) = K ⋆ ( s − z 1 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) = 1 \begin{aligned} &G(s) H(s)=\frac{\boldsymbol{K}^{\star}\left(s-\boldsymbol{z}_{1}\right) \cdots\left(s-\boldsymbol{z}_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}=\frac{\boldsymbol{K}^{*} \prod\limits_{i=1}^{m}\left(s-\boldsymbol{z}_{i}\right)}{\prod\limits_{j=1}^{n}\left(s-p_{j}\right)} =1 \end{aligned} G(s)H(s)=(sp1)(sp2)(spn)K(sz1)(szm)=j=1n(spj)Ki=1m(szi)=1
幅值条件、相角条件如下
∣ G ( s ) H ( s ) ∣ = K ∗ ∣ s − z 1 ∣ ⋯ ∣ s − z m ∣ ∣ s − p 1 ∣ ∣ s − p 2 ∣ ⋯ ∣ s − p n ∣ = K ∗ ∏ i = 1 m ∣ ( s − z i ) ∣ ∏ j = 1 n ∣ ( s − p j ) ∣ = 1 ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = 2 k π \begin{aligned} &|G(s) H(s)|=\frac{\boldsymbol{K}^{*}\left|s-\boldsymbol{z}_{1}\right| \cdots\left|s-\boldsymbol{z}_{m}\right|}{\left|s-\boldsymbol{p}_{1}\right|\left|s-\boldsymbol{p}_{2}\right| \cdots\left|s-p_{n}\right|}=\boldsymbol{K}^{*} \frac{\prod\limits_{i=1}^{m}\left|\left(s-\boldsymbol{z}_{i}\right)\right|}{\prod\limits_{j=1}^{n}\left|\left(s-\boldsymbol{p}_{j}\right)\right|}=1 \\ &\angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=2 \boldsymbol{k} \pi \end{aligned} G(s)H(s)=sp1sp2spnKsz1szm=Kj=1n(spj)i=1m(szi)=1G(s)H(s)=i=1m(szi)j=1n(spj)=2kπ
 

可以看出0°根轨迹和180°根轨迹的幅值条件一致,而相角条件差了180°(名称由来)

因此需要在原根轨迹规则中发生一些变化

0°根轨迹绘制规则如下:

  1. 根轨迹的起点和终点(不变)

    根轨迹起始于开环极点,终止于开环零点:如果开环极点个数n大于开环零点个数m,则有n-m条根轨迹终止于无穷远处。

     

  2. 根轨迹的分支数、对称性、连续性(不变)

    由于根轨迹的起点是开环极点,而有几个起点根轨迹就会有几个分支,所以根轨迹的分支数=开环极点数=闭环特征方程的阶数

    根轨迹关于实轴对称

    根轨迹连续无间断

     

  3. 实轴上的根轨迹(变化,奇偶不同)

    从实轴上最右端的开环零、极点算起,偶数开环零极点到奇数开环零、极点之间的区域必是根轨迹,否则一定不是根轨迹

     

  4. 根之和(不变)

    n − m ≥ 2 n-m \ge 2 nm2时,特征根会随着根轨迹增益的大小变化而改变,但是其和不变,为 s n − 1 s^{n-1} sn1的系数的相反数

     

  5. 渐近线(变化,重心位置不变,但是渐近线和等效重心之间的夹角变化)

    重心是根据开环传递函数和用重心近似的开环传递函数的前两项相等得出的,和相角条件无关,故重心位置不受影响

    但是用重心近似的相角条件需要改写为
    ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = m φ a − n φ a = ( m − n ) φ a = − 2 k π \sum\limits_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum\limits_{j=1}^{n} \angle\left(s-p_{j}\right)=m \varphi_{a}-n \varphi_{a}=(m-n) \varphi_{a}=-2 k \pi i=1m(szi)j=1n(spj)=mφanφa=(mn)φa=2kπ
    因此
    { σ a = ∑ i = 1 n p i − ∑ j = 1 m z i n − m φ a = 2 k π n − m \left\{\begin{array}{l} \sigma_{a}=\frac{\sum\limits_{i=1}^{n} p_{i}-\sum\limits_{j=1}^{m} z_{i}}{n-m} \\\\ \varphi_{a}=\frac{2k \pi}{n-m} \end{array}\right. σa=nmi=1npij=1mziφa=nm2kπ
     

  6. 分离点与分离角(不变)

    因为分离点是利用重根的性质求解的,和相角条件无关,所以不变

    (1)重根法

    利用特征多项式在n重根处的n阶导数为0可以得到方程组

    如果是2重根,即两条根轨迹的分离点,则方程组如下
    { D ( s ) = A ( s ) + K ∗ B ( s ) = 0 d D ( s ) d s = d A ( s ) d s + K ∗ d B ( s ) d s = 0 \left\{\begin{aligned} &D(s)=A(s)+K^* B(s)=0 \\\\ &\frac{d D(s)}{d s}=\frac{d A(s)}{d s}+K^* \frac{d B(s)}{d s}=0 \end{aligned}\right. D(s)=A(s)+KB(s)=0dsdD(s)=dsdA(s)+KdsdB(s)=0
    可以直接计算得分离点s和此时的 K ∗ K^* K

    也可以由该公式推得以下公式
    ∑ i = 1 n 1 d − p i = ∑ j = 1 m 1 d − z j \sum_{i=1}^{n} \frac{\mathbf{1}}{d-\boldsymbol{p}_{i}}=\sum_{j=1}^{m} \frac{\mathbf{1}}{d-\boldsymbol{z}_{j}} i=1ndpi1=j=1mdzj1
    其中d为分离点

    (2)极值法

    分离点处的 K ∗ K^* K值是实轴上根轨迹对应 K ∗ K^* K值的最值。

    因此可以列如下方程组
    { d K ∗ d s = d d s [ − A ( s ) B ( s ) ] = 0 D ( s ) = A ( s ) + K ∗ B ( s ) = 0 \left\{\begin{aligned} &\frac{d K^*}{d s}=\frac{d}{d s}\left[-\frac{A(s)}{B(s)}\right]=0 \\\\ &D(s)=A(s)+K^* B(s)=0 \end{aligned}\right. dsdK=dsd[B(s)A(s)]=0D(s)=A(s)+KB(s)=0
    求解得分离点s和此时的 K ∗ K^* K

     

    得到分离点后,为了绘制根轨迹还需要计算根轨迹在该点处进入或离开实轴的角度,即分离角
    分 离 角 = ( 2 l + 1 ) π 进 入 并 立 即 离 开 分 离 点 的 根 轨 迹 分 支 数 分离角=\frac{(2l+1)\pi}{进入并立即离开分离点的根轨迹分支数} =(2l+1)π
    l从0到(进入并立即离开分离点的根轨迹分支数-1)变化,对应l个进入或离开的角度

     

  7. 与虚轴交点(不变)

    与虚轴的交点使用代数方法或者临界稳定特性求解的,与相角条件无关

    (1)根轨迹与虚轴相交时,即为纯虚根,系统临界稳定,可以根据劳斯稳定判据,判断临界稳定时根轨迹增益的取值,判断与虚轴交点的位置(使劳斯表中出现全零行)

    (2)将根设为 j ω j\omega jω带入特征方程求解(阶数低的时候可以使用)

     

  8. 起始角和终止角(变化)

    因为要带入到相角条件中计算,因此发生变化
    ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = 2 k π \angle \boldsymbol{G}(s) H(s)=\sum_{i=1}^{m} \angle\left(s-\boldsymbol{z}_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)=2k \pi G(s)H(s)=i=1m(szi)j=1n(spj)=2kπ
    例如计算极点 p 1 p_1 p1处的起始角,带入相角条件
    ∑ i = 1 m ∠ ( p 1 − z i ) − ∑ j = 2 n ∠ ( p 1 − p j ) − θ p 1 = 2 k π \sum_{i=1}^{m} \angle\left(p_1-\boldsymbol{z}_{i}\right)-\sum_{j=2}^{n} \angle\left(p_1-p_{j}\right) - \theta_{p1}=2 \boldsymbol{k} \pi i=1m(p1zi)j=2n(p1pj)θp1=2kπ

    θ p 1 = 2 k π + ∑ i = 1 m ∠ ( p 1 − z i ) − ∑ j = 2 n ∠ ( p 1 − p j ) \theta_{p1}=2 \boldsymbol{k} \pi + \sum_{i=1}^{m} \angle\left(p_1-\boldsymbol{z}_{i}\right)-\sum_{j=2}^{n} \angle\left(p_1-p_{j}\right) θp1=2kπ+i=1m(p1zi)j=2n(p1pj)
    计算其他起始点终止点方法同理

 

利用根轨迹分析系统性能

(1)绘制系统根轨迹

(2)依照题意确定闭环极点位置

(3)确定闭环零点

(4)保留主导极点,利用零极点分析系统性能

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值