非线性控制系统分析

非线性控制系统分析

非线性控制系统概述

理想的线性系统是不存在的。实际的物理系统组成元件或多或少地带有非线性因素。非线性系统是普遍存在的,线性模型是实际系统在特定条件下的近似描述。

非线性特性:指系统中某些元件的输入、输出关系不是按线性规律变化

非线性控制系统:当系统中含有一个或多个具有非线性特性的元件时,该系统称为非线性控制系统

如果在工作范围内可以线性化为线性系统,则称为非本质非线性;如果无法线性化,则称为本质非线性

非线性系统的特点如下:
(1)非线性系统不满足叠加原理

(2)非线性控制系统的稳定性:
1)除与系统的结构及参数有关外,还与初始条件密切相关。
2 ) 非线性控制系统可能存在多个平衡状态,且有些是稳定的,有些是不稳定的。

(3)稳定的自持 (激)振荡:除了发散或收敛这两种运动形式外,非线性系统还存在第三种运动形式。即在无任何外力作用下,系统能够产生具有一定频率和振幅的稳定的等幅振荡运动,即自持 (激)振荡

(4)对正弦输入信号的稳态响应不是正弦信号,而是具有多种频率的周期信号的组合

非线性控制系统结构框图如下,其中, f ( e ) f(e) f(e)是一个非线性特性

常见非线性特性

饱和特性

$$ x(t)=\left\{\begin{array}{ll} k e(t), & |e(t)|\le a \\ k a\cdot {sign}[e(t)], & |e(t)| > a \end{array}\right. $$

sign ⁡ [ e ( t ) ] = { 1 , e ( t ) > 0 − 1 , e ( t ) < 0 不 定 , e ( t ) = 0 \operatorname{sign}[e(t)]=\left\{\begin{array}{ll} 1, & e(t) > 0 \\ -1, & e(t)<0\\ 不定,&e(t)=0 \end{array}\right. sign[e(t)]=1,1,e(t)>0e(t)<0e(t)=0

a a a为线性域宽度, k k k为线性域斜率

饱和特性使系统在大信号输入下的等效开环增益减小,降低稳态精度( 稳态误差越大),但提高相对稳定性;
可利用饱和特性为信号限幅。

假定两级饱和特性串联,第一级饱和特性的线性域宽度为 a 1 a_1 a1,线性域斜率为 k 1 k_1 k1;第二级饱和特性的线性域宽度为 a 2 a_2 a2,线性域斜率为 k 2 k_2 k2,如果要充分利用饱和特性的先行区,则第一级的最大输出 a 1 k 1 a_1k_1 a1k1应该大于等于第二级的线性域宽度 a 1 k 1 ≥ a 2 a_1k_1\ge a_2 a1k1a2,即 a 1 ≥ a 2 k 1 a_1\ge \frac{a_2}{k_1} a1k1a2

死区(不灵敏区)特性

x ( t ) = { 0 , ∣ e ( t ) ∣ ≤ a k [ e ( t ) − a ⋅ s i g n ( t ) ] , ∣ e ( t ) ∣ > a x(t)=\left\{\begin{array}{cl} 0, & |e(t)| \leq a \\ k[e(t)-a \cdot {sign}(t)], & |e(t)|>a \end{array}\right. x(t)={0,k[e(t)asign(t)],e(t)ae(t)>a
a为死区宽度,k为线性输出斜率

死区特性使系统等效开环增益减小,稳态误差越大 ,但提高相对稳定性;
不灵敏区使系统输出在时间上滞后,降低系统跟踪精度;
可以滤去输入端的小扰动信号,提高抗干扰能力。

连续串联两级死区特性,为了能够使系统有输出,则需要使第一级的输出 k 1 [ e ( t ) − a 1 ] k_1[e(t)-a_1] k1[e(t)a1]大于第二级的死区宽度 a 2 a_2 a2

k 1 [ e ( t ) − a 1 ] > a 2 k_1[e(t)-a_1]>a_2 k1[e(t)a1]>a2,即 e ( t ) > a 2 k 1 + a 1 e(t)>\frac{a_2}{k_1}+a_1 e(t)>k1a2+a1

继电(器)特性

x ( t ) = { 0 , − m h < e ( t ) < h , e ˙ ( t ) > 0 0 , − h < e ( t ) < m h , e ˙ ( t ) < 0 M s i g n e ( t ) , ∣ e ( t ) ∣ ≥ h M , e ( t ) ≥ m h , e ˙ ( t ) < 0 − M , e ( t ) ≤ − m h , e ˙ ( t ) > 0 x(t)=\left\{\begin{array}{cc} 0, & -m h<e(t)<h, \dot{e}(t)>0 \\ 0, & -h<e(t)<m h, \dot{e}(t)<0 \\ M {signe}(t), & |e(t)| \geq h \\ M, & e(t) \geq m h, \dot{e}(t)<0 \\ -M, & e(t) \leq-m h, \dot{e}(t)>0 \end{array}\right. x(t)=0,0,Msigne(t),M,M,mh<e(t)<h,e˙(t)>0h<e(t)<mh,e˙(t)<0e(t)he(t)mh,e˙(t)<0e(t)mh,e˙(t)>0
h为继电器吸合电压

mh为继电器释放电压

M为继电器饱和输出

继电(器)特性常用来设计改善系统性能的切换元件。

h = 0 h=0 h=0时,为理想继电特性

m = 1 m=1 m=1 h ≠ 0 h\ne 0 h=0时,为带死区的继电特性

m = − 1 m=-1 m=1 h ≠ 0 h\ne 0 h=0时,为带滞环的继电特性

间隙(滞环)特性

$$ x(t)=\left\{\begin{array}{ll} k[e(t)-a], & \dot{x}(t)>0 \\ k[e(t)+a], & \dot{x}(t)<0 \\ b {sign} e(t), & \dot{x}(t)=0 \end{array}\right. $$ 2a为间隙宽度,k为输出特性斜率

间隙(滞环)特性有死区,相当于时间上的滞后,降低系统跟踪精度。 可用于齿轮传动等系统中改变方向。

变增益特性

$$ x(t)=\left\{\begin{array}{ll} k_{1} e(t), & |e(t)| \leq a \\ k_{2} e(t), & |e(t)|>a \end{array}\right. $$ a为切换点, $k_1,k_2$为输出特性斜率

变增益特性使系统在大误差信号作用下具有较大增益,从而改善稳态性能;
在小误差信号作用下具有较小增益,提高相对稳定性。

相平面法

相轨迹的基本概念和性质

相平面:由系统的某变量以及其导数构成的用以描述系统状态的平面。

相轨迹:系统变量及其导数随时间变化在相平面上描绘出来的轨迹

相轨迹簇:各种情况下系统的相轨迹的总和

相轨迹图=相平面+相轨迹簇

一个二阶的连续非线性系统可以写作 x ¨ + f ( x , x ˙ ) = 0 \ddot{x}+f(x,\dot{x})=0 x¨+f(x,x˙)=0

若以 x x x作为横坐标 x ˙ \dot{x} x˙作为纵坐标,相轨迹的斜率为 d x ˙ d x \frac{d\dot{x}}{dx} dxdx˙
x ¨ = d x ˙ d t = d x ˙ d x d x d t = x ˙ d x ˙ d x = − f ( x , x ˙ ) \ddot{x}=\frac{d \dot{x}}{d t}=\frac{d \dot{x}}{d x} \frac{d x}{d t}=\dot{x} \frac{d \dot{x}}{d x}=-f(x, \dot{x}) x¨=dtdx˙=dxdx˙dtdx=x˙dxdx˙=f(x,x˙)

d x ˙ d x = d x ˙ / d t d x / t = − f ( x , x ˙ ) x ˙ \frac{d \dot x}{d x}=\frac{d \dot x /d t}{d x / t}=\frac{-f(x, \dot x)}{\dot{x}} dxdx˙=dx/tdx˙/dt=x˙f(x,x˙)

由上式可知,除了满足 d x ˙ d x = d x ˙ / d t d x / t = − f ( x , x ˙ ) x ˙ = 0 0 \frac{d \dot x}{d x}=\frac{d \dot x /d t}{d x / t}=\frac{-f(x, \dot x)}{\dot{x}}=\frac{0}{0} dxdx˙=dx/tdx˙/dt=x˙f(x,x˙)=00的点,相轨迹上其余点处,斜率应该是确定且唯一的,除了这些点以外,相轨迹不相交。

将这些斜率不确定的点称为相轨迹的奇点(平衡点),求解的方法是,令 x ˙ = 0 , x ¨ = 0 \dot x=0,\ddot x=0 x˙=0,x¨=0,带入,求解非线性方程

因为相平面的纵坐标为 x ˙ \dot x x˙,所以,在相平面上半平面, x ˙ \dot x x˙为正,x增加,x为横轴,所以相轨迹向右移动

相反,在相平面下半平面, x ˙ \dot x x˙为负,x减小,x为横轴,所以相轨迹向左移动。相轨迹总体呈顺时针运动。

当相轨迹穿越横轴时, x ˙ = 0 \dot x=0 x˙=0所以x在此处不变。若 x ¨ = 0 \ddot x=0 x¨=0,则为平衡点,不穿越。若 x ¨ ≠ 0 \ddot x\ne0 x¨=0,则x不变,90°垂直穿越横轴

相轨迹的绘制方法

(1)解析法

根据相轨迹斜率方程 d x ˙ d x = d x ˙ / d t d x / t = − f ( x , x ˙ ) x ˙ \frac{d \dot x}{d x}=\frac{d \dot x /d t}{d x / t}=\frac{-f(x, \dot x)}{\dot{x}} dxdx˙=dx/tdx˙/dt=x˙f(x,x˙)分离变量积分, ∫ x ˙ 0 x ˙ x ˙ d x ˙ = ∫ x 0 x − f ( x , x ˙ ) d x \int_{\dot{x}_{0}}^{\dot{x}} \dot{x} d \dot{x}=\int_{x_{0}}^{x}-f(x, \dot{x}) d x x˙0x˙x˙dx˙=x0xf(x,x˙)dx

例:系统方程为 x ¨ + ω n 2 x = 0 \ddot x+\omega_n^2x=0 x¨+ωn2x=0

首先将系统方程转变为相轨迹斜率方程的形式
x ¨ = d x ˙ d t = d x ˙ d x ⋅ d x d t = d x ˙ d x x ˙ = − ω n 2 x \ddot x=\frac{d \dot x}{d t}=\frac{d\dot x}{dx}\cdot\frac{dx}{dt}=\frac{d\dot x}{dx}\dot x =-\omega_n^2x x¨=dtdx˙=dxdx˙dtdx=dxdx˙x˙=ωn2x
x ˙ \dot x x˙及其微分移至等式左侧,x及其微分移至等式右侧
x ˙ d x ˙ = − ω n 2 x d x \dot xd \dot x=-\omega_n^2xd x x˙dx˙=ωn2xdx
等式两边分别各自积分
1 2 x ˙ 2 = − ω n 2 2 ⋅ x 2 + C \frac{1}{2}\dot x^2 = \frac{-\omega_n^2}{2}\cdot x^2+C 21x˙2=2ωn2x2+C
x ˙ \dot x x˙ x x x移到等式左侧
x 2 + 1 ω n 2 x ˙ 2 = 2 C ω n 2 = A 2 x^2+\frac{1}{\omega_n^2}\dot x^2 = \frac{2C}{\omega_n^2}=A^2 x2+ωn21x˙2=ωn22C=A2

x 2 A 2 + x ˙ 2 A 2 ω n 2 = 1 \frac{x^2}{A^2}+\frac{\dot x^2}{A^2 \omega_n^2}=1 A2x2+A2ωn2x˙2=1

故相轨迹为椭圆,其中A与C有关,取决于初始位置

(2)等倾斜线法

相轨迹斜率方程为
d x ˙ d x = d x ˙ / d t d x / t = − f ( x , x ˙ ) x ˙ \frac{d \dot x}{d x}=\frac{d \dot x /d t}{d x / t}=\frac{-f(x, \dot x)}{\dot{x}} dxdx˙=dx/tdx˙/dt=x˙f(x,x˙)
定义一个常数 α \alpha α,令
α = − f ( x , x ˙ ) x ˙ \alpha =\frac{-f(x, \dot x)}{\dot{x}} α=x˙f(x,x˙)
该方程为等倾斜线方程,等倾斜线方程与相轨迹的交点处,相轨迹的斜率为 α \alpha α

等倾斜线法步骤:

1)由 α = − f ( x , x ˙ ) x ˙ \alpha =\frac{-f(x, \dot x)}{\dot{x}} α=x˙f(x,x˙) α \alpha α不同值得若干等倾线。一般等倾线间隔取5°~10°。
2)在每根等倾线上画上斜率为 α \alpha α的短线,表示相轨迹通过这些等倾线时的切线斜率,短线上箭头表示相轨迹运动方向。
3)从初始值出发,沿切线方向将这些短线用光滑连续曲线连接起来,即得相轨迹。

由相轨迹求时间解

假定相轨迹上有两点A,B,相轨迹A-B段的平均速度为 x ˙ A B = Δ x Δ t = x B − x A Δ t A B \dot x_{AB}=\frac{\Delta x}{\Delta t}=\frac{x_B-x_A}{\Delta t_{AB}} x˙AB=ΔtΔx=ΔtABxBxA,而平均速度又可以近似为 x ˙ A B = x ˙ A + x ˙ B 2 \dot x_{AB}=\frac{\dot x_A+\dot x_B}{2} x˙AB=2x˙A+x˙B。因此将二式联立可得
Δ t A B = 2 ( x B − x A ) x ˙ A + x ˙ B \Delta t_{AB}=\frac{2(x_B-x_A)}{\dot x_A +\dot x_B} ΔtAB=x˙A+x˙B2(xBxA)
A-B越短越精确

或者可以用积分法
x ˙ = d x d t \dot x=\frac{dx}{dt} x˙=dtdx

d t = 1 x ˙ d x dt=\frac{1}{\dot x}dx dt=x˙1dx

Δ t = ∫ x 1 x 2 1 x ˙ d x \Delta t=\int_{x_1}^{x_2}{\frac{1}{\dot x}}dx Δt=x1x2x˙1dx

二阶系统的相轨迹

二阶线性系统的微分方程为
x ¨ + 2 ξ ω n x ˙ + ω n 2 x = 0 x ( 0 ) = x 0 , x ˙ ( 0 ) = x ˙ 0 \ddot{x}+2 \xi \omega_{n} \dot{x}+\omega_{n}^{2} x=0 \quad x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0} x¨+2ξωnx˙+ωn2x=0x(0)=x0,x˙(0)=x˙0
其特征根分布于相轨迹奇点类型、稳定性的关系如下图所示

ξ = 0 , s 1 , 2 = ± j ω n \xi = 0,s_{1,2}=\pm j\omega_n ξ=0,s1,2=±jωn:相轨迹围绕原点旋转,不收敛于原点。此时奇点称为中心点

0 < ξ < 1 , s 1 , 2 = − ξ ω n ± j ω n 1 − ξ 2 0<\xi < 1,s_{1,2}=-\xi \omega_n\pm j\omega_n\sqrt{1-\xi^2} 0<ξ<1,s1,2=ξωn±jωn1ξ2 :相轨迹为向心螺旋线最终趋于原点,为一个收敛的运动。此时奇点是稳定焦点

− 1 < ξ < 0 , s 1 , 2 = ξ ω n ± j ω n 1 − ξ 2 -1<\xi < 0,s_{1,2}=\xi \omega_n\pm j\omega_n\sqrt{1-\xi^2} 1<ξ<0,s1,2=ξωn±jωn1ξ2 :相轨迹为离心螺旋线,最终发散至无穷。此时奇点称不稳定焦点

ξ > 1 , s 1 , 2 = − ξ ω n ± ω n ξ 2 − 1 \xi > 1,s_{1,2}=-\xi \omega_n\pm \omega_n\sqrt{\xi^2-1} ξ>1,s1,2=ξωn±ωnξ21 :当初始点落在斜率分别等于两个根的两条特殊等倾线时,相轨迹沿直线趋于原点;否则,相轨迹是一簇终于原点的抛物线。此时奇点称为稳定节点

ξ = 1 , s 1 , 2 = − ω n \xi = 1,s_{1,2}=- \omega_n ξ=1,s1,2=ωn:当初始点位于等倾线 x ˙ = − ω n x \dot x=-\omega_nx x˙=ωnx时,相轨迹沿直线趋于原点。否则相轨迹是一簇终于原点的抛物线。此时奇点称为稳定节点

ξ < − 1 , s 1 , 2 = − ξ ω n ± ω n ξ 2 − 1 \xi < -1,s_{1,2}=-\xi \omega_n\pm \omega_n\sqrt{\xi^2-1} ξ<1,s1,2=ξωn±ωnξ21 :当初始点落在斜率分别等于两个根的特殊等倾线时,相轨迹沿直线远离原点;否则相轨迹是一簇趋于无穷远(反向延长交于原点)的抛物线。此时奇点称不稳定节点

ξ = − 1 , s 1 , 2 = ω n \xi = -1,s_{1,2}= \omega_n ξ=1,s1,2=ωn:当初始点位于等倾线 x ˙ = ω n x \dot x=\omega_nx x˙=ωnx时,相轨迹沿直线远离原点。否则,相轨迹是一簇趋于无穷远(反向延长交于原点)的抛物线。此时奇点称不稳定节点

若系统为 x ¨ + 2 ξ ω n x ˙ − ω n 2 x = 0 \ddot{x}+2 \xi \omega_{n} \dot{x}-\omega_{n}^{2} x=0 x¨+2ξωnx˙ωn2x=0 s 1 , 2 = − ξ ω n ± ω n ξ 2 − 1 s_{1,2}=-\xi \omega_n\pm \omega_n\sqrt{\xi^2-1} s1,2=ξωn±ωnξ21 有极点在右半平面:只有初始值落在负斜率的等倾线 x ˙ = s 1 , 2 x = ( − ξ ω n ± ω n ξ 2 + 1 ) x \dot{x}=s_{1,2} x=\left(-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}+1}\right) x x˙=s1,2x=(ξωn±ωnξ2+1 )x上,相轨迹将趋于原点。但如受到微小的扰动,将偏离该轨迹发散至无穷。此时奇点称为鞍点

非本质非线性系统分析

分析平衡点附近系统稳定性

先令 x ¨ = x ˙ = 0 \ddot x = \dot x =0 x¨=x˙=0求出平衡点,在平衡点附近将变量假设为平衡点加上一个增量,换元后,将非线性方程转化为在平衡点附近关于增量的线性方程,进而根据增量线性方程的特征方程根的分布,确定原系统平衡点附近的情况

例如

对系统 x ¨ + ( 3 x ˙ − 0.5 ) x ˙ + x + x 2 = 0 \ddot{x}+(3 \dot x-0.5) \dot{x}+x+x^{2}=0 x¨+(3x˙0.5)x˙+x+x2=0,求系统的平衡点,判定平衡点附近根轨迹的性质

解:令 x ¨ = x ˙ = 0 \ddot x = \dot x =0 x¨=x˙=0 x + x 2 = x ( x + 1 ) = 0 x+x^{2}=x(x+1)=0 x+x2=x(x+1)=0

可以求得系统的平衡点
{ x e 1 = 0 x e 2 = − 1 \left\{\begin{array}{l} x_{e 1}=0 \\ x_{e2}=-1 \end{array}\right. {xe1=0xe2=1
令在平衡点附近,
{ x = Δ x + x e 1 = Δ x x = Δ x + x e 2 = Δ x − 1 \left\{\begin{array}{l} x=\Delta x + x_{e1} = \Delta x \\ x=\Delta x + x_{e2} = \Delta x-1 \end{array}\right. {x=Δx+xe1=Δxx=Δx+xe2=Δx1
带入系统方程得
{ Δ x ¨ + ( 3 Δ x ˙ − 0.5 ) Δ x ˙ + Δ x + ( Δ x ) 2 = 0 Δ x ¨ + ( 3 Δ x ˙ − 0.5 ) Δ x ˙ + ( Δ x − 1 ) + ( Δ x − 1 ) 2 = 0 \left\{\begin{array}{l} \Delta\ddot{x}+(3 \Delta\dot x-0.5)\Delta \dot{x}+\Delta x+(\Delta x)^{2}=0 \\ \Delta\ddot{x}+(3 \Delta\dot x-0.5)\Delta \dot{x}+(\Delta x - 1)+(\Delta x-1)^{2}=0 \end{array}\right. {Δx¨+(3Δx˙0.5)Δx˙+Δx+(Δx)2=0Δx¨+(3Δx˙0.5)Δx˙+(Δx1)+(Δx1)2=0
将系统,在平衡点附近线性化,忽略 ( Δ x ) 2 (\Delta x)^2 (Δx)2以及 ( Δ x ˙ ) 2 (\Delta \dot x)^2 (Δx˙)2项,得
{ Δ x ¨ − 0.5 Δ x ˙ + Δ x = 0 Δ x ¨ − 0.5 Δ x ˙ − Δ x = 0 \left\{\begin{array}{l} \Delta\ddot{x}-0.5\Delta \dot{x}+\Delta x=0 \\ \Delta\ddot{x}-0.5\Delta \dot{x}-\Delta x=0 \end{array}\right. {Δx¨0.5Δx˙+Δx=0Δx¨0.5Δx˙Δx=0
由此将非线性方程转化为在平衡点附近关于增量的线性方程

这两个系统的特征方程为
{ s 2 − 0.5 s + 1 = 0 s 2 − 0.5 s − 1 = 0 \left\{\begin{array}{l} s^2-0.5s+1=0\\ s^2-0.5s-1=0\\ \end{array}\right. {s20.5s+1=0s20.5s1=0
解得其特征方程的根分别为
s = 0.25 ± j 0.97 s=0.25 \pm j0.97 s=0.25±j0.97

s = { 0.78 − 1.28 s=\left\{\begin{array}{l} 0.78\\ -1.28 \end{array}\right. s={0.781.28

因此系统的第一个平衡点为不稳定焦点,第二个平衡点为鞍点

分析系统自由响应运动

绘制系统的相轨迹(解析法、等倾斜线法),根据系统在相平面上的初始位置,沿着所处的相轨迹运动

本质非线性系统分析

与非本质非线性不同,本质非线性无法直接小偏差线性化,因此,需要将原系统分为几个线性区域,并针对每一个区域做线性化处理

开关线:划分不同线性区域的边界线

平衡线(奇线):平衡点组成的线,不同区域的相轨迹相互影响而产生

实奇点:该奇点位于该系统对应的线性区域内

虚奇点:该奇点位于该系统对应的线性区域外

例1

系统方程为 x ¨ + x ˙ + ∣ x ∣ = 0 \ddot x+\dot x+|x|=0 x¨+x˙+x=0,分析系统的自由响应

解:首先将系统分段描述
{ x ¨ + x ˙ + x = 0 x ≥ 0  I  x ¨ + x ˙ − x = 0 x < 0  II  \left\{\begin{array}{ll} \ddot{x}+\dot{x}+x=0 & x \geq 0 \quad \text { I } \\ \ddot{x}+\dot{x}-x=0 & x<0 \quad \text { II } \end{array}\right. {x¨+x˙+x=0x¨+x˙x=0x0 I x<0 II 
两个线性区域拼接的边界线称为开关线

对I区和II区分别求平衡点,得
{ I x e 1 = 0 I I x e 2 = 0 \left\{\begin{array}{ll} I & x_{e 1}=0 \\ I I & x_{e 2}=0 \end{array}\right. {IIIxe1=0xe2=0
对I区和II区的平衡点附近线性化处理后分别求特征方程
{  I  s 2 + s + 1 = 0  II  s 2 + s − 1 = 0 \left\{\begin{array}{cc} \text { I } & s^{2}+s+1=0 \\ \text { II } & s^{2}+s-1=0 \end{array}\right. { I  II s2+s+1=0s2+s1=0
求出其特征根
{ s 1 , 2 = − 0.5 ± j 0.866 s 1 , 2 = { 0.62 − 1.62 \left\{\begin{array}{l} s_{1,2}=-0.5 \pm j 0.866 \\ s_{1,2}=\left\{\begin{array}{l} 0.62 \\ -1.62 \end{array}\right. \end{array}\right. s1,2=0.5±j0.866s1,2={0.621.62
因此对于右半平面的相轨迹而言,x=0为稳定焦点,对于左半平面的相轨迹而言,x=0为鞍点

因此所有的相轨迹都会从右侧往左侧发散

例2

系统的方程为 x ¨ + x + s i g n x ˙ = 0 \ddot x+x+sign\dot x = 0 x¨+x+signx˙=0,分析系统的自由响应

将系统分段描述
{ x ¨ + x + 1 = 0 x ˙ ≥ 0 I x ¨ + x − 1 = 0 x ˙ < 0 I I \left\{\begin{array}{ll} \ddot x+x+1=0 & \dot x \geq 0 &I\\ \ddot x+x-1=0 & \dot x<0&II \end{array}\right. {x¨+x+1=0x¨+x1=0x˙0x˙<0III

计算出其奇点
{ I x e 1 = − 1 I I x e 2 = 1 \left\{\begin{array}{ll} I & x_{e1}=-1\\ II & x_{e2}=1 \end{array}\right. {IIIxe1=1xe2=1
在平衡点附近线性化处理后分别求特征方程
{ I s 2 + 1 = 0 I I s 2 + 1 = 0 \left\{ \begin{array}{ll} I&s^2+1=0\\ II&s^2+1=0 \end{array} \right. {IIIs2+1=0s2+1=0
求出其特征根
{ s 1 , 2 = ± j 1 s 1 , 2 = ± j 1 \left\{ \begin{array}{ll} s_{1,2}=\pm j1\\ s_{1,2}=\pm j1 \end{array} \right. {s1,2=±j1s1,2=±j1
因此极点为中心点

画出相轨迹,判断出-1至1之间均为平衡点,连出的线成为平衡线或奇线

线性控制系统的相平面分析

1.求二阶线性系统运动方程及初始值

2.线性系统相轨迹和奇点类别取决于系统特征根在复平面上的分布

3.线性系统奇点的位置和相轨迹初始值位置取决于输入信号的形式

例如,设如图线性系统开始处于静止状态(即输出初始值为0),分析闭环稳定性和稳态误差。其中 r ( t ) = R ⋅ t r(t)=R\cdot t r(t)=Rt

解:

第一步根据系统结构和输入,列写系统运动方程,把系统描述成e和e的各阶导的微分方程

根据题意, r ( t ) = R ⋅ t r(t)=R\cdot t r(t)=Rt因此
e = r − c = R t − c e=r-c=Rt-c e=rc=Rtc
因此
{ c = R t − e c ˙ = R − e ˙ c ¨ = − e ¨ \left\{ \begin{array}{l} c=Rt-e\\ \dot c = R-\dot e\\ \ddot c = -\ddot e \end{array} \right. c=Rtec˙=Re˙c¨=e¨
由e(t)和c(t)的关系可知
C ( s ) = E ( s ) ⋅ K s ( T s + 1 ) C(s)=E(s)\cdot \frac{K}{s(Ts+1)} C(s)=E(s)s(Ts+1)K

T s 2 C ( s ) + s C ( s ) = K E ( s ) Ts^2C(s)+sC(s)=KE(s) Ts2C(s)+sC(s)=KE(s)

T c ¨ + c ˙ = − T e ¨ − e ˙ + R = K e T\ddot c+\dot c=-T\ddot e-\dot e+R=Ke Tc¨+c˙=Te¨e˙+R=Ke


T e ¨ + e ˙ + K e = R T\ddot e + \dot e+Ke=R Te¨+e˙+Ke=R
x = e − R K x=e-\frac{R}{K} x=eKR e = x + R K e=x+\frac{R}{K} e=x+KR,上式变为
T x ¨ + x ˙ + K x = 0 T\ddot x+\dot x+Kx=0 Tx¨+x˙+Kx=0
该方程为系统的运动方程,令 x ˙ \dot x x˙ x ¨ \ddot x x¨均为0,求系统的奇点,得到系统奇点为
x = 0 x=0 x=0
由运动方程列写系统的特征方程
T s 2 + s + K = 0 Ts^2+s+K=0 Ts2+s+K=0
则特征根为
s 1 , 2 = − 1 ± 1 − 4 K T 2 T s_{1,2}=\frac{-1\pm\sqrt{1-4KT}}{2T} s1,2=2T1±14KT
假如 4 K T ≤ 1 4KT\le1 4KT1 ξ ≥ 1 \xi\ge1 ξ1,则奇点为稳定节点

假如 4 K T > 1 4KT>1 4KT>1 0 < ξ < 1 0<\xi<1 0<ξ<1,则奇点为稳定焦点

其相轨迹初始位置
{ x ( 0 ) = e ( 0 ) − R K = r ( 0 ) − c ( 0 ) − R K = − R K x ˙ ( 0 ) = e ˙ ( 0 ) = r ˙ ( 0 ) − c ˙ ( 0 ) = R \left\{ \begin{array}{l} x(0)=e(0)-\frac{R}{K}=r(0)-c(0)-\frac{R}{K}=-\frac{R}{K}\\ \dot x(0)=\dot e(0)=\dot r(0)-\dot c(0)=R \end{array} \right. {x(0)=e(0)KR=r(0)c(0)KR=KRx˙(0)=e˙(0)=r˙(0)c˙(0)=R
因此,系统稳定且收敛至平衡点 x = 0 x=0 x=0

由于 x = 0 x=0 x=0时, e = x + R K = R K e=x+\frac{R}{K}=\frac{R}{K} e=x+KR=KR,因此稳态误差 e s s = R K e_{ss}=\frac{R}{K} ess=KR

非线性控制系统分析

在非线性系统分析方法的基础上,利用与线性控制系统分析同样的步骤,把系统列写为某个变量的微分方程(常用误差e和输出c,输入不等于0时,用e,输入等于0,研究自由响应,用c),写出每一个线性区域内的线性运动方程,进而分析每一部分的奇点和相轨迹。画出根轨迹,分析运动特性。

例1:设输出初始值为0(即系统为静止状态), r ( t ) = R ⋅ 1 ( t ) , R > a , k = 1 r(t)=R\cdot 1(t),R>a,k=1 r(t)=R1(t),R>a,k=1

解:

第一步,将非线性部分分为几个线性区,列写每一个线性区内的微分方程
x ( t ) = { k e ( t ) − a ≤ e ( t ) ≤ a I k a e ( t ) > a I I − k a e ( t ) < − a I I I x(t)=\left\{ \begin{array}{ll} ke(t)&-a\le e(t)\le a&I\\ ka&e(t)>a&II\\ -ka&e(t)<-a&III \end{array} \right. x(t)=ke(t)kakaae(t)ae(t)>ae(t)<aIIIIII
I区和II区的开关线为e=a,I区和III区的开关线为e=-a

第二步,分析系统的线性部分,写为微分方程
C ( s ) = X ( s ) ⋅ K s ( T s + 1 ) C(s)=X(s)\cdot \frac{K}{s(Ts+1)} C(s)=X(s)s(Ts+1)K

T c ¨ + c ˙ = K x T\ddot c+\dot c=Kx Tc¨+c˙=Kx

{ e = r − c = R − c e ˙ = − c ˙ e ¨ = − c ¨ \left\{ \begin{array}{l} e=r-c=R-c\\ \dot e=-\dot c\\ \ddot e=-\ddot c \end{array} \right. e=rc=Rce˙=c˙e¨=c¨

− T e ¨ − e ˙ = K x -T\ddot e - \dot e=Kx Te¨e˙=Kx

第三步,结合非线性部分的每一个线性区分别写出运动方程,并计算每一部分的奇点

I区:
− T e ¨ − e ˙ = K k e = K e -T\ddot e - \dot e=Kke=Ke Te¨e˙=Kke=Ke
运动方程为
T e ¨ + e ˙ + K e = 0 T\ddot e + \dot e + Ke=0 Te¨+e˙+Ke=0
II区
− T e ¨ − e ˙ = K k a = K a -T\ddot e - \dot e=Kka=Ka Te¨e˙=Kka=Ka
运动方程为
T e ¨ + e ˙ + K a = 0 T\ddot e + \dot e + Ka = 0 Te¨+e˙+Ka=0
III区
− T e ¨ − e ˙ = K ( − k a ) = − K a -T\ddot e - \dot e=K(-ka)=-Ka Te¨e˙=K(ka)=Ka
运动方程为
T e ¨ + e ˙ − K a = 0 T\ddot e + \dot e - Ka = 0 Te¨+e˙Ka=0
由上,系统的运动方程为
{ T e ¨ + e ˙ + K e = 0 I T e ¨ + e ˙ + K a = 0 I I T e ¨ + e ˙ − K a = 0 I I I \left\{ \begin{array}{l} T\ddot e + \dot e + Ke=0 & I\\ T\ddot e + \dot e + Ka = 0 & II\\ T\ddot e + \dot e - Ka = 0 & III \end{array} \right. Te¨+e˙+Ke=0Te¨+e˙+Ka=0Te¨+e˙Ka=0IIIIII
因此I区有平衡点 e 1 = 0 e_1=0 e1=0,II区,III区没有平衡点

第四步,根据运动方程列每一部分的特征方程,求特征根,判断奇点类型

I区的特征方程为 T s 2 + s + K = 0 Ts^2+s+K=0 Ts2+s+K=0,特征根为 s = − 1 ± 1 − 4 K T 2 T s=\frac{-1\pm \sqrt{1-4KT}}{2T} s=2T1±14KT

假如 4 K T ≤ 1 4KT\le1 4KT1 ξ ≥ 1 \xi\ge1 ξ1,则奇点为稳定节点

假如 4 K T > 1 4KT>1 4KT>1 0 < ξ < 1 0<\xi<1 0<ξ<1,则奇点为稳定焦点

第五步,根据系统初始的输入输出求相轨迹初始位置
{ e ( 0 ) = r ( 0 ) − c ( 0 ) = R e ˙ ( 0 ) = r ˙ ( 0 ) − c ˙ ( 0 ) = 0 \left\{ \begin{array}{l} e(0) = r(0) - c(0) =R\\ \dot e(0) = \dot r(0) - \dot c(0)=0 \end{array} \right. {e(0)=r(0)c(0)=Re˙(0)=r˙(0)c˙(0)=0
第六步,画出开关线以及根轨迹(解析法或者等倾斜线法),前一线性区域相轨迹到达开关线处的交点即下一线性区的初始值

例2:具有死区特性的非线性系统分析。设系统开始处于静止状态

  1. 用相平面法分析系统在输入 r ( t ) = 4 ⋅ 1 ( t ) r(t) = 4 \cdot 1(t) r(t)=41(t)时的运动情况。
  2. 如果发生自持(激)振荡 ,求自持振荡的周期和振幅。

解:

第一步,将非线性部分分为几个线性区,列写每一个线性区内的微分方程
x ( t ) = { 0 − 2 ≤ e ( t ) ≤ 2 I e ( t ) − 2 e ( t ) > 2 I I e ( t ) + 2 e ( t ) < − 2 I I I x(t)=\left\{ \begin{array}{lcc} 0 & -2\le e(t)\le 2 & I\\ e(t) - 2 & e(t)>2 & II\\ e(t) + 2 & e(t)<-2 & III \end{array} \right. x(t)=0e(t)2e(t)+22e(t)2e(t)>2e(t)<2IIIIII
I区和II区的开关线为e=2,I区和III区的开关线为e=-2

第二步,分析系统的线性部分,写为微分方程
C ( s ) = X ( s ) ⋅ 1 s 2 C(s)=X(s)\cdot \frac{1}{s^2} C(s)=X(s)s21

c ¨ = x \ddot c = x c¨=x

{ e = r − c = 4 − c e ˙ = − c ˙ e ¨ = − c ¨ \left\{ \begin{array}{l} e=r-c=4-c\\ \dot e=-\dot c\\ \ddot e=-\ddot c \end{array} \right. e=rc=4ce˙=c˙e¨=c¨

− e ¨ = x -\ddot e = x e¨=x

第三步,结合非线性部分的每一个线性区分别写出运动方程,并计算每一部分的奇点

I区:
− e ¨ = 0 -\ddot e = 0 e¨=0
运动方程为
e ¨ = 0 \ddot e=0 e¨=0
II区
− e ¨ = e − 2 -\ddot e = e - 2 e¨=e2
运动方程为
e ¨ + e − 2 = 0 \ddot e + e - 2 = 0 e¨+e2=0
III区
− e ¨ = e + 2 -\ddot e = e + 2 e¨=e+2
运动方程为
e ¨ + e + 2 = 0 \ddot e + e + 2 = 0 e¨+e+2=0
由上,系统的运动方程为
{ e ¨ = 0 I e ¨ + e − 2 = 0 I I e ¨ + e + 2 = 0 I I I \left\{ \begin{array}{l} \ddot e=0 & I\\ \ddot e + e - 2 = 0 & II\\ \ddot e + e + 2 = 0 & III \end{array} \right. e¨=0e¨+e2=0e¨+e+2=0IIIIII
因此系统的奇点为
{ e 1 I e 2 = 2 I I e 3 = − 2 I I I \left\{ \begin{array}{l} e_1 & I\\ e_2 = 2 & II\\ e_3=-2 & III \end{array} \right. e1e2=2e3=2IIIIII
第四步,根据运动方程列每一部分的特征方程,求特征根,判断奇点类型

特征方程分别为
{ s 2 = 0 I s 2 + 1 = 0 I I s 2 + 1 = 0 I I I \left\{ \begin{array}{l} s^2=0 & I\\ s^2+1 = 0 & II\\ s^2+1 = 0 & III \end{array} \right. s2=0s2+1=0s2+1=0IIIIII
其特征根分别为
{ s 1 , 2 = 0 I s 1 , 2 = ± j I I s 1 , 2 = ± j I I I \left\{ \begin{array}{l} s_{1,2}=0 & I\\ s_{1,2} = \pm j & II\\ s_{1,2} = \pm j & III \end{array} \right. s1,2=0s1,2=±js1,2=±jIIIIII
由此可知,

I区的相轨迹为水平线;

II区的平衡点为中心点,相轨迹为椭圆,由于特征根为 ± j \pm j ±j,所以为以奇点 e 2 = 2 e_2=2 e2=2为圆心的圆;

III区的平衡点为中心点,相轨迹为椭圆,由于特征根为 ± j \pm j ±j,所以为以奇点 e 3 = − 2 e_3=-2 e3=2为圆心的圆;

第五步,根据系统初始的输入输出求相轨迹初始位置
{ e ( 0 ) = r ( 0 ) − c ( 0 ) = 4 e ˙ ( 0 ) = r ˙ ( 0 ) − c ˙ ( 0 ) = 0 \left\{ \begin{array}{l} e(0) = r(0) - c(0) =4\\ \dot e(0) = \dot r(0) - \dot c(0)=0 \end{array} \right. {e(0)=r(0)c(0)=4e˙(0)=r˙(0)c˙(0)=0
第六步,画出开关线以及根轨迹(解析法或者等倾斜线法),前一线性区域相轨迹到达开关线处的交点即下一线性区的初始值

第七步,根据题目要求进行运动分析

根据相轨迹可以看出,系统自持振荡,在相轨迹的II区和III区时呈正弦运动,在I区时呈匀速运动

T = 4 ( t C A + t A D ) = 4 ( ∫ 4 2 1 e ˙ d e + ∫ 2 0 1 e ˙ d e ) = 4 [ ∫ 4 2 1 − 4 − ( e − 2 ) 2 d e + ∫ 2 0 ( 1 − 2 ) d e ] = 4 ( π 2 + 1 ) \begin{array}{l} T=4\left(t_{C A}+t_{A D}\right) =4\left(\int_{4}^{2} \frac{1}{\dot{e}} d e+\int_{2}^{0} \frac{1}{\dot{e}} d e\right) \\ =4\left[\int_{4}^{2} \frac{1}{-\sqrt{4-(e-2)^{2}}} d e+\int_{2}^{0}\left(\frac{1}{-2}\right) d e\right] \\ =4\left(\frac{\pi}{2}+1\right) \end{array} T=4(tCA+tAD)=4(42e˙1de+20e˙1de)=4[424(e2)2 1de+20(21)de]=4(2π+1)
因此系统自持振荡的振幅为4,周期为 4 ( π 2 + 1 ) 4(\frac{\pi}{2}+1) 4(2π+1)

由于
{ e = r − c = 4 − c e ˙ = − c ˙ e ¨ = − c ¨ \left\{ \begin{array}{l} e=r-c=4-c\\ \dot e=-\dot c\\ \ddot e=-\ddot c \end{array} \right. e=rc=4ce˙=c˙e¨=c¨
因此,如果要将此系统的相轨迹画为 c − c ˙ c-\dot c cc˙相轨迹,只需将原图沿两轴各翻转180°后,水平移动4各单位即可

二阶非线性系统的周期运动会在相轨迹上产生极限环,

若极限环内向外发散,极限环外向内收敛,则称为稳定的极限环,系统产生自持振荡

若极限环内向内收敛,极限环外向外发散,则称为不稳定的极限环,初始位置落在极限环内还是极限环外决定了收敛还是发散

若极限环内外都向内收敛,或者极限环内外都向外发散,则称为半稳定的极限环,最终一定会收敛或发散

描述函数法

可以利用傅里叶级数对周期函数进行展开,

y ( t ) = A 0 + ∑ n = 1 ∞ ( A n cos ⁡ n ω t + B n sin ⁡ n ω t ) = A 0 + ∑ n = 1 ∞ Y n sin ⁡ ( n ω t + φ n ) \begin{array}{l} y(t)=A_{0}+\sum\limits_{n=1}^{\infty}\left(A_{n} \cos n \omega t+B_{n} \sin n \omega t\right)\\ =A_{0}+\sum\limits_{n=1}^{\infty} Y_{n} \sin \left(n \omega t+\varphi_{n}\right) \end{array} y(t)=A0+n=1(Ancosnωt+Bnsinnωt)=A0+n=1Ynsin(nωt+φn)

{ A 0 = 1 2 π ∫ 0 2 π y ( t ) d ( ω t ) A n = 1 π ∫ 0 2 π y ( t ) cos ⁡ n ω t d ( ω t ) B n = 1 π ∫ 0 2 π y ( t ) sin ⁡ n ω t d ( ω t ) \left\{\begin{array}{l} A_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} y(t) d(\omega t)\\ A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} y(t) \cos n \omega t d(\omega t) \\ B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} y(t) \sin n \omega t d(\omega t) \end{array}\right. A0=2π102πy(t)d(ωt)An=π102πy(t)cosnωtd(ωt)Bn=π102πy(t)sinnωtd(ωt)

{ Y n = A n 2 + B n 2 φ n = arctan ⁡ A n B n \left\{\begin{array}{c} Y_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}} \\ \varphi_{n}=\arctan \frac{A_{n}}{B_{n}} \end{array}\right. {Yn=An2+Bn2 φn=arctanBnAn

n = 0 n=0 n=0,即 A 0 A_0 A0表示的是常值分量

n = 1 n=1 n=1,表示的是基波分量

n > 1 n>1 n>1,表示的高次谐波分量

给一个奇对称非线性特性加上一个正弦信号输出的是一个周期信号,且常值分量 A 0 A_0 A0为0

描述函数法的基本思想是对于具有本质非线性的非线性环节,设输入信号为正弦信号,则用非线性环节的稳态输出信号中的一次谐波分量(基波分量)来代替实际非线性环节的稳态输出。

当输入为 x ( t ) = A sin ⁡ ω t x(t)=A \sin \omega t x(t)=Asinωt

输出的基波为 y 1 ( t ) = Y 1 sin ⁡ ( ω t + φ 1 ) y_{1}(t)=Y_{1} \sin \left(\omega t+\varphi_{1}\right) y1(t)=Y1sin(ωt+φ1)

定义描述函数 N ( A ) N(A) N(A)
N ( A ) = Y 1 A ∠ φ 1 = A 1 2 + B 1 2 A ∠ ( arctan ⁡ A 1 B 1 ) N(A)=\frac{Y_{1}}{A} \angle \varphi_{1}=\frac{\sqrt{A_{1}^{2}+B_{1}^{2}}}{A} \angle\left(\arctan \frac{A_{1}}{B_{1}}\right) N(A)=AY1φ1=AA12+B12 (arctanB1A1)
即输出基波分量的幅值与输入幅值之比作为模,输出基波分量的相角和输入相角之差作为幅角的量称为描述函数

由于前面所述的几种典型非线性特性都是奇对称的,不包含储能元件,因此其描述函数都是输入信号幅值A的函数,与输入信号频率 ω \omega ω无关

如果非线性环节是单值函数,则N(A)是实数,虚部为0

如果非线性环节不是单值函数,则N(A)是复数,虚部不为0

典型非线性特性的描述函数如下:
(1)饱和特性 A ≥ a A \geq a Aa
N ( A ) = 2 k π { arcsin ⁡ a A + a A 1 − ( a A ) 2 } N(A)=\frac{2 k}{\pi}\left\{\arcsin \frac{a}{A}+\frac{a}{A} \sqrt{1-\left(\frac{a}{A}\right)^{2}}\right\} N(A)=π2k{arcsinAa+Aa1(Aa)2 }

(2)死区特性 A ≥ a A \geq a Aa
N ( A ) = 2 k π { π 2 − arcsin ⁡ a A − a A 1 − ( a A ) 2 } N(A)=\frac{2 k}{\pi}\left\{\frac{\pi}{2}-\arcsin \frac{a}{A}-\frac{a}{A} \sqrt{1-\left(\frac{a}{A}\right)^{2}}\right\} N(A)=π2k{2πarcsinAaAa1(Aa)2 }

(3)继电特性

a.理想继电特性 A ≥ 0 A \geq 0 A0
N ( A ) = 4 M π A N(A)=\frac{4 M}{\pi A} N(A)=πA4M

b.带死区的继电特性 A ≥ h A \geq h Ah
N ( A ) = 4 M π A 1 − ( h A ) 2 N(A)=\frac{4 M}{\pi A} \sqrt{1-\left(\frac{h}{A}\right)^{2}} N(A)=πA4M1(Ah)2

c.带滞环的继电特性 A ≥ h A \geq h Ah
N ( A ) = 4 M π A 1 − ( h A ) 2 − j 4 M h π A 2 N(A)=\frac{4 M}{\pi A} \sqrt{1-\left(\frac{h}{A}\right)^{2}}-j \frac{4 Mh}{\pi A^{2}} N(A)=πA4M1(Ah)2 jπA24Mh

(4)间隙特性 A ≥ a A \geq a Aa

N ( A ) = k π { π 2 + arcsin ⁡ ( 1 − 2 a A ) + 2 ( 1 − 2 a A ) a A ( 1 − a A ) } + j 4 k a π A ( a A − 1 ) N(A)=\frac{k}{\pi}\left\{\frac{\pi}{2}+\arcsin \left(1-\frac{2 a}{A}\right)+2\left(1-\frac{2 a}{A}\right) \sqrt{\frac{a}{A}\left(1-\frac{a}{A}\right)}\right\}+j \frac{4 k a}{\pi A}\left(\frac{a}{A}-1\right) N(A)=πk{2π+arcsin(1A2a)+2(1A2a)Aa(1Aa) }+jπA4ka(Aa1)

并联非线性环节的描述函数为描述函数相加,但是串联非线性环节的描述函数不等于描述函数相乘,只能通过求出其总的等效非线性特性再求出描述函数

当一个系统满足如下要求时,可以利用描述函数法分析非线性系统的稳定性和自振

(1)结构上可以等效化简为一个非线性环节和一个线性环节串联的形式

(2)非线性特性满足奇对称,且基波分量幅值占优

(3)线性环节的低通滤波特性好

稳定性分析

假定线性系统 G ( s ) G(s) G(s)是一个最小相角系统,即其零极点都在虚轴的左侧或虚轴上

利用描述函数写系统的特征方程为
1 + N ( A ) ⋅ G ( j ω ) = 0 1+N(A)\cdot G(j\omega) = 0 1+N(A)G(jω)=0

N ( A ) ⋅ G ( j ω ) = − 1 N(A) \cdot G(j\omega) = -1 N(A)G(jω)=1
根据频域知识,只需画出方程左侧的幅相特性曲线,观察对(-1,j0)的包围情况,即可得出稳定性

但是由于N(A)并不是输入信号频率 ω \omega ω的函数,并不方便画出其幅相特性曲线,故将N(A)除至等式右侧,即
G ( j ω ) = − 1 N ( A ) G(j\omega) = -\frac{1}{N(A)} G(jω)=N(A)1
− 1 N ( A ) -\frac{1}{N(A)} N(A)1称为负倒描述函数,方程左侧的幅频特性方便画出,

假如将负倒描述函数视作广义的(-1,j0)点,则可以得出以下结论

(前提是G(s)是最小相角系统,虚轴右侧无零极点)

(1)假如 G ( j ω ) G(j\omega) G(jω)不包围 − 1 N ( A ) -\frac{1}{N(A)} N(A)1,则系统稳定

(2)假如 G ( j ω ) G(j\omega) G(jω)包围 − 1 N ( A ) -\frac{1}{N(A)} N(A)1,则系统不稳定

(3)假如 G ( j ω ) G(j\omega) G(jω) − 1 N ( A ) -\frac{1}{N(A)} N(A)1相交,则系统可能发生自振

自振分析

负倒描述函数是一个关于输入信号幅度A的函数,尽管画出来的是一条曲线,但是一个具体的信号对应一个具体的幅值,对应负倒描述函数曲线上的一个点。

如果该点没有被最小相位线性系统的奈奎斯特曲线包围,则系统是稳定的,会收敛,输入非线性环节的信号幅值逐渐减小,对应在负倒描述函数曲线上往后退

如果该点被最小相位线性系统的奈奎斯特曲线包围了,则系统不稳定,会发散,输入非线性环节的信号幅值逐渐增大,对应在负倒描述函数曲线上往前进

如果负倒描述函数与最小相位线性系统的奈奎斯特曲线交点处,在负倒描述函数的前进方向没有被包围(进入稳定区),在后退方向被包围了(进入不稳定区),则在该点发生自持振荡,该点为稳定平衡点(稳定的极限环)。反之该点为不稳定平衡点(不稳定的极限环)。

如果负倒描述函数曲线与奈奎斯特曲线相切,则形成半稳定周期运动(半稳定极限环)。

求自振频率即求两条曲线的交点,求解 N ( A ) ⋅ G ( j ω ) = − 1 N(A) \cdot G(j\omega) = -1 N(A)G(jω)=1即可,求出的 ω \omega ω为自振频率, A A A为自振幅值

典型非线性特性对系统稳定性的影响

高频低振幅的自持振荡可起到润滑作用

消除非线性系统自持(激)振荡的措施

  1. 改变线性部分的参数(K),使G( jω)曲线不与曲线 -1/N(A) 相交;
  2. 改变非线性特性的参数,使 -1/N(A)曲线不与G( jω)曲线相交;
  3. 线性部分增加校正环节,改变G( jω)曲线形状,使其不与 -1/N(A) 曲线相交。

结构非典型的处理办法

由于N(A)并不是输入信号频率 ω \omega ω的函数,并不方便画出其幅相特性曲线,故将N(A)除至等式右侧,即
G ( j ω ) = − 1 N ( A ) G(j\omega) = -\frac{1}{N(A)} G(jω)=N(A)1
− 1 N ( A ) -\frac{1}{N(A)} N(A)1称为负倒描述函数,方程左侧的幅频特性方便画出,

假如将负倒描述函数视作广义的(-1,j0)点,则可以得出以下结论

(前提是G(s)是最小相角系统,虚轴右侧无零极点)

(1)假如 G ( j ω ) G(j\omega) G(jω)不包围 − 1 N ( A ) -\frac{1}{N(A)} N(A)1,则系统稳定

(2)假如 G ( j ω ) G(j\omega) G(jω)包围 − 1 N ( A ) -\frac{1}{N(A)} N(A)1,则系统不稳定

(3)假如 G ( j ω ) G(j\omega) G(jω) − 1 N ( A ) -\frac{1}{N(A)} N(A)1相交,则系统可能发生自振

自振分析

负倒描述函数是一个关于输入信号幅度A的函数,尽管画出来的是一条曲线,但是一个具体的信号对应一个具体的幅值,对应负倒描述函数曲线上的一个点。

如果该点没有被最小相位线性系统的奈奎斯特曲线包围,则系统是稳定的,会收敛,输入非线性环节的信号幅值逐渐减小,对应在负倒描述函数曲线上往后退

如果该点被最小相位线性系统的奈奎斯特曲线包围了,则系统不稳定,会发散,输入非线性环节的信号幅值逐渐增大,对应在负倒描述函数曲线上往前进

如果负倒描述函数与最小相位线性系统的奈奎斯特曲线交点处,在负倒描述函数的前进方向没有被包围(进入稳定区),在后退方向被包围了(进入不稳定区),则在该点发生自持振荡,该点为稳定平衡点(稳定的极限环)。反之该点为不稳定平衡点(不稳定的极限环)。

如果负倒描述函数曲线与奈奎斯特曲线相切,则形成半稳定周期运动(半稳定极限环)。

求自振频率即求两条曲线的交点,求解 N ( A ) ⋅ G ( j ω ) = − 1 N(A) \cdot G(j\omega) = -1 N(A)G(jω)=1即可,求出的 ω \omega ω为自振频率, A A A为自振幅值

典型非线性特性对系统稳定性的影响

高频低振幅的自持振荡可起到润滑作用

消除非线性系统自持(激)振荡的措施

  1. 改变线性部分的参数(K),使G( jω)曲线不与曲线 -1/N(A) 相交;
  2. 改变非线性特性的参数,使 -1/N(A)曲线不与G( jω)曲线相交;
  3. 线性部分增加校正环节,改变G( jω)曲线形状,使其不与 -1/N(A) 曲线相交。

结构非典型的处理办法

如果非线性环节和线性环节的相对位置并不典型,则根据”闭环特征方程相同,则两非线性系统稳定性相同“的原理,等效成典型位置

  • 3
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值