自动控制理论(1):一般概念及数学模型

自动控制理论:一般概念及数学模型

控制系统的组成

自动控制:在无人直接参与的情况下,利用控制装置,使工作机械、或生产过程(被控对象)的某一个物理量(被控量)按预定的规律(给定量)运行。

控制系统可以分为被控对象和控制装置

控制装置可以分为:测量元件、比较元件、放大元件、执行机构、校正装置、给定元件

其中测量元件、比较元件、执行机构是每一个控制系统所必须要有的

比如一个水位控制系统,检测水池的水位,将该水位与给定量比较,如果高了就放水,低了就注水,从而使得水位始终与给定量保持一致,这就是一个自动控制的过程。该控制系统中水池是被控对象,水位控制系统是控制装置。其中检测水池水位的传感器是测量元件,比较水池水位和给定水位的元件为比较元件,注水和放水的机构为执行机构。

如果这个水池始终水不会进去,不会出来那么也就不需要控制,但是事实上,水池会因为蒸发、漏水导致水位降低,因为下雨导致水位上升,这些作用称为扰动。自动控制系统在不断检测水位是否和给定量一致的过程中可以抑制、消除扰动对被控系统的影响。

而将这个系统的输出量——水池水位引回输入端与输入信号比较的过程,称为负反馈。

负反馈原理:将系统的输出信号引回输入端,与输入信号相比较,利用所得的偏差信号进行控制,达到减小偏差、消除偏差的目的。

存在反馈环节的控制系统称为闭环控制系统,不存在反馈环节的系统称为开环控制系统。

开环控制系统的结构如下图所示

闭环控制系统的结构如下图所示

闭环(反馈)控制的特点:

(1)系统内部存在反馈,信号流动构成闭回路

(2)偏差起调节作用

假如在上述系统中,水池漏水了,那么等到漏水导致水位下降再通过检测水位差进行控制效果并不是最好的,可以在漏水的地方装一个流量计,然后根据漏水的情况直接改变系统的输出,即根据漏水的情况直接注水,不要等到水位下降再注水。这种并不源自于系统输出(水池水位)的控制作用称为前馈。前馈分为按干扰补偿的前馈校正和按输入补偿的前馈校正。根据漏水情况直接注水的例子是按干扰补偿的前馈校正。

控制作用可分为

(1)反馈控制

(2)前馈控制

(3)复合控制(前馈+反馈)

完整控制系统结构组成如下图所示

控制系统的分类

  1. 根据给定信号的形式可以分为

    (1)恒值系统:给定信号恒定不变,要求系统输出为一恒定值

    (2)随动(伺服)系统:给定信号变化,要求系统输出跟随给定信号变化

    (3)程序控制系统(程控系统):给定信号变化,但是提前设置好的已知量

  2. 按是否满足叠加原理可以分为

    (1)线性系统:满足叠加原理,即两个输入一起作用时的输出等于分别作用带来的输出之和

    (2)非线性系统:不满足叠加原理

  3. 按参数是否随时间变化可以分为

    (1)定常系统:系统参数不随时间变化

    (2)时变系统:系统参数随时间变化

  4. 按信号传递的形式

    (1)连续系统:系统中的所有量都是对时间连续的模拟量

    (2)离散系统:系统中一处或多处不是对时间连续的模拟量

  5. 按输入输出变量的多少

    (1)单变量系统:输入输出均只有一个量

    (2)多变量系统:输入或输出有多个量

对控制系统的基本要求

1.稳(基本要求)——稳定性

要求系统要稳定

2.准(稳态要求)——稳态性能

准确性:系统响应达到稳态时,输出跟踪精度要高

3.快(动态要求)——动态性能

快速性:系统阶跃响应的过渡过程要平稳、快速

控制系统的数学模型

数学模型:描述系统输入、输出变量以及内部各变量之间关系的数学表达式

数学模型建立的方法:

  1. 解析法(机理分析法)

    根据系统工作所依据的物理定律列写运动方程

  2. 实验法(系统辨识法)

    给系统施加某种测试信号,记录输出响应,并用适当的数学模型去逼近系统的输入输出特性

微分方程数学模型

定义一个系统输入信号为 r ( t ) r(t) r(t),输出信号为 c ( t ) c(t) c(t)

假如有两个输入信号 r 1 ( t ) , r 2 ( t ) r_1(t),r_2(t) r1(t),r2(t),其对应的输出信号分别为 c 1 ( t ) , c 2 ( t ) c_1(t),c_2(t) c1(t),c2(t)

假如其线性叠加之后得到的信号 a ⋅ r 1 ( t ) + b ⋅ r 2 ( t ) a \cdot r_1(t) + b\cdot r_2(t) ar1(t)+br2(t)输入该系统得到的输出为 a ⋅ c 1 ( t ) + b ⋅ c 2 ( t ) a \cdot c_1(t) + b\cdot c_2(t) ac1(t)+bc2(t),则称该系统满足叠加原理,系统为线性系统;否则称该系统不满足叠加原理,系统为非线性系统。

线性定常系统的一般形式如下:
a n d n c ( t ) d t n + a n − 1 d n − 1 c ( t ) d t n − 1 + … + a 1 d c ( t ) d t + a 0 c ( t ) = b m d m r ( t ) d t m + b m − 1 d m − 1 r ( t ) d t m − 1 + … + b 1 d r ( t ) d t + b 0 r ( t ) \begin{aligned} a_{n} & \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\ldots+a_{1} \frac{d c(t)}{d t}+a_{0} c(t) \\ &=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\ldots+b_{1} \frac{d r(t)}{d t}+b_{0} r(t) \end{aligned} andtndnc(t)+an1dtn1dn1c(t)++a1dtdc(t)+a0c(t)=bmdtmdmr(t)+bm1dtm1dm1r(t)++b1dtdr(t)+b0r(t)
当该微分方程只包含输入输出以及其各阶导数的一次项,没有其自身及各阶导数的高次项,没有交叉乘积项,则该系统为线性系统,否则为非线性系统

当该微分方程中每一项的系数是固定的常数,和时间无关时,该系统为定常系统,否则为时变系统

对如下的系统建立微分方程数学模型

根据模拟电路虚短虚断的知识,可以知道
U − = U + = 0 , I − = I + = 0 U_-=U_+=0,I_-=I_+=0 U=U+=0,I=I+=0
由此可知
u i = i 1 ⋅ R 1 u_i=i_1\cdot R_1 ui=i1R1

− i 2 = u o R 2 + C d u o d t = − i 1 -i_2=\frac{u_o}{R_2}+C\frac{du_o}{dt}=-i_1 i2=R2uo+Cdtduo=i1

因此可得系统微分方程数学模型为
u o R 2 + C d u o d t = − u i R 1 \frac{u_o}{R_2}+C\frac{du_o}{dt}=-\frac{u_i}{R_1} R2uo+Cdtduo=R1ui
其他线性系统建立微分方程数学模型的方式类似

假如系统非线性,但只在工作点附近运动,且工作点附近满足泰勒展开的条件,可以通过泰勒级数展开忽略2阶及以上小量,取一次近似,可以将其线性化为一个线性系统进行分析

拉氏变换的基础知识

复数: s = σ + j ω s=\sigma+j\omega s=σ+jω

复函数: F ( s ) = F x ( s ) + j F y ( s ) F(s)=F_x(s)+jF_y(s) F(s)=Fx(s)+jFy(s)

复函数的模: ∣ F ( s ) ∣ = F x 2 + F y 2 |F(s)|=\sqrt{F_x^2+F_y^2} F(s)=Fx2+Fy2

复函数的相角: ∠ F ( s ) = a r c t a n F y F x \angle F(s)=arctan\frac{F_y}{F_x} F(s)=arctanFxFy

复数的共轭: F ˉ ( s ) = F x ( s ) − j F y \bar{F}(s)=F_x(s)-jF_y Fˉ(s)=Fx(s)jFy

解析:复函数 F ( s ) F(s) F(s)在点s的各阶导数都存在,则 F ( s ) F(s) F(s)在s点解析。若在某一个区域中的每一个点都解析,则称复函数在区域中是解析的。

拉氏变换:
L [ f ( t ) ] = F ( s ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t L[f(t)]=F(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} d t L[f(t)]=F(s)=0f(t)estdt
称F(s)为象函数,f(t)为象原函数

常见函数的拉氏变换

单位脉冲函数: L [ δ ( t ) ] = 1 L[\delta(t)]=1 L[δ(t)]=1

单位阶跃函数: L [ 1 ( t ) ] = 1 s L[1(t)]=\frac{1}{s} L[1(t)]=s1

单位速度函数: L [ t ] = 1 s 2 L[t]=\frac{1}{s^{2}} L[t]=s21

单位加速度函数: L [ 1 t 2 ] = 1 s 3 L[\frac{1}{t^2}]=\frac{1}{s^{3}} L[t21]=s31

指数函数: L [ e − a t ] = 1 s + a L[e^{-at}]=\frac{1}{s+a} L[eat]=s+a1

正弦函数: L [ s i n ω t ] = ω s 2 + ω 2 L[sin\omega t]=\frac{\omega}{s^2+\omega^2} L[sinωt]=s2+ω2ω

余弦函数: L [ c o s ω t ] = s s 2 + ω 2 L[cos\omega t]=\frac{s}{s^2+\omega^2} L[cosωt]=s2+ω2s

拉氏变换的重要定理:

(1)线性性质:
L [ a f 1 ( t ) ± b f 2 ( t ) ] = a F 1 ( s ) ± b F 2 ( s ) L\left[a f_{1}(t) \pm b f_{2}(t)\right]=a F_{1}(s) \pm b F_{2}(s) L[af1(t)±bf2(t)]=aF1(s)±bF2(s)
(2)微分性质:
L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L\left[f^{\prime}(t)\right]=s \cdot F(s)-f(0) L[f(t)]=sF(s)f(0)

L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − s f ( n − 2 ) ( 0 ) − f ( n − 1 ) ( 0 ) L\left[f^{(n)}(t)\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)sf(n2)(0)f(n1)(0)

在0初始条件下:
L [ f ( n ) ( t ) ] = s n F ( s ) L\left[f^{(n)}(t)\right]=s^{n} F(s) L[f(n)(t)]=snF(s)
微分性质决定了拉氏变换可以将一个微分方程转换为拉氏域的代数方程

(3)积分性质
L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f ( − 1 ) ( 0 ) L\left[\int f(t) d t\right]=\frac{1}{s} \cdot F(s)+\frac{1}{s} f^{(-1)}(0) L[f(t)dt]=s1F(s)+s1f(1)(0)

L [ ∬ ⋯ ∫ f ( t ) d t n ] = 1 s n F ( s ) + 1 s n f ( − 1 ) ( 0 ) + 1 s n − 1 f ( − 2 ) ( 0 ) + ⋯ + 1 s f ( − n ) ( 0 ) L\left[\iint \cdots \int f(t) d t^{n}\right]=\frac{1}{s^{n}} F(s)+\frac{1}{s^{n}} f^{(-1)}(0)+\frac{1}{s^{n-1}} f^{(-2)}(0)+\cdots+\frac{1}{s} f^{(-n)}(0) L[f(t)dtn]=sn1F(s)+sn1f(1)(0)+sn11f(2)(0)++s1f(n)(0)

0初始条件下:
L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) L\left[\int f(t) d t\right]=\frac{1}{s} \cdot F(s) L[f(t)dt]=s1F(s)
(4)实位移定理
L [ f ( t − τ 0 ) ] = e − τ 0 ⋅ s ⋅ F ( s ) L\left[f\left(t-\tau_{0}\right)\right]=e^{-\tau_{0} \cdot s} \cdot F(s) L[f(tτ0)]=eτ0sF(s)
(5)复位移定理
L [ e A ⋅ t f ( t ) ] = F ( s − A ) L\left[e^{A \cdot t} f(t)\right]=F(s-A) L[eAtf(t)]=F(sA)
(6)初值定理
lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) \lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s \cdot F(s) t0limf(t)=slimsF(s)
(7)终值定理
lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s \cdot F(s) tlimf(t)=s0limsF(s)

拉式反变换

(1)反演公式
f ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) ⋅ e t s d s f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) \cdot e^{t s} d s f(t)=2πj1σjσ+jF(s)etsds
(2)部分分时展开查表法:把原函数写为多个简单函数的和,利用重要定理反变换再叠加

(部分分式展开详见我的另一篇博客)

拉氏变换求解线性定常系统微分方程

a n d n c ( t ) d t n + a n − 1 d n − 1 c ( t ) d t n − 1 + … + a 1 d c ( t ) d t + a 0 c ( t ) = b m d m r ( t ) d t m + b m − 1 d m − 1 r ( t ) d t m − 1 + … + b 1 d r ( t ) d t + b 0 r ( t ) \begin{aligned} a_{n} & \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\ldots+a_{1} \frac{d c(t)}{d t}+a_{0} c(t) \\ &=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\ldots+b_{1} \frac{d r(t)}{d t}+b_{0} r(t) \end{aligned} andtndnc(t)+an1dtn1dn1c(t)++a1dtdc(t)+a0c(t)=bmdtmdmr(t)+bm1dtm1dm1r(t)++b1dtdr(t)+b0r(t)

其中 n > m n>m n>m,0初始条件

等式左右各自拉氏变换得
( a n s n + a n − 1 s n − 1 + … + a 1 s + a 0 ) C ( s ) = ( b m s m + b m − 1 s m − 1 + … + b 1 s + b 0 ) R ( s ) \begin{aligned} &\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}\right) C(s) \\ &\quad=\left(b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}\right) R(s) \end{aligned} (ansn+an1sn1++a1s+a0)C(s)=(bmsm+bm1sm1++b1s+b0)R(s)

C ( s ) = b m s m + b m − 1 s m − 1 + … + b 1 s + b 0 a n s n + a n − 1 s n − 1 + … + a 1 s + a 0 R ( s ) C(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}} R(s) C(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0R(s)

假定输入信号为单位脉冲,则
C ( s ) = r ( t ) = δ ( t ) b m s m + b m − 1 s m − 1 + … + b 0 a n s n + a n − 1 s n − 1 + … + a 0 = C 1 s − λ 1 + C 2 s − λ 2 + ⋯ C n s − λ n C(s) \stackrel{r(t)=\delta(t)}{=} \frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}}=\frac{C_{1}}{s-\lambda_{1}}+\frac{C_{2}}{s-\lambda_{2}}+\cdots \frac{C_{n}}{s-\lambda_{n}} C(s)=r(t)=δ(t)ansn+an1sn1++a0bmsm+bm1sm1++b0=sλ1C1+sλ2C2+sλnCn
根据代数定理,可以知道将会有n个特征根 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn

对其进行拉式反变换
c ( t ) = L − 1 [ C ( s ) ] = C 1 e λ 1 t + C 2 e λ 2 t + ⋯ + C n e λ n t c(t)=L^{-1}[C(s)]=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}+\cdots+C_{n} e^{\lambda_{n} t} c(t)=L1[C(s)]=C1eλ1t+C2eλ2t++Cneλnt
e λ i t e^{\lambda_it} eλit为特征根 λ i \lambda_i λi对应的模态(振型),因此单位脉冲响应是系统特征根对应的模态的线性组合

传递函数数学模型

由上述可知,系统的响应和系统的输入、初始条件、系统的结构参数有关

系统自身特性决定系统性能

传递函数:在零初始条件下,线性定常系统输出量拉氏变换与输入量拉氏变换之比
G ( s ) = C ( s ) R ( s ) G(s)=\frac{C(s)}{R(s)} G(s)=R(s)C(s)
由线性定常系统微分方程的一般形式得出,线性定常系统传递函数的一般形式为
C ( s ) R ( s ) = b m s m + b m − 1 s m − 1 + … + b 1 s + b 0 a n s n + a n − 1 s n − 1 + … + a 1 s + a 0 = G ( s ) \frac{C(s)}{R(s)}=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}=G(s) R(s)C(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0=G(s)
尤其定义两种传递函数的标准形式

  1. 首1标准型:

G ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) G(s)=\frac{K^{*} \prod\limits_{j=1}^{m}\left(s-z_{j}\right)}{\prod\limits_{i=1}^{n}\left(s-p_{i}\right)} G(s)=i=1n(spi)Kj=1m(szj)

  1. 尾1标准型:

G ( s ) = K ∏ k = 1 m 1 ( τ k s + 1 ) ∏ l = 1 m 2 ( τ l 2 s 2 + 2 ξ τ l s + 1 ) s ν ∏ i = 1 n 1 ( T i s + 1 ) ∏ j = 1 n 2 ( T j 2 s 2 + 2 ξ T j s + 1 ) G(s)=K \frac{\prod\limits_{k=1}^{m_{1}}\left(\tau_{k} s+1\right) \prod\limits_{l=1}^{m_{2}}\left(\tau_{l}^{2} s^{2}+2 \xi \tau_{l} s+1\right)}{s^{\nu} \prod\limits_{i=1}^{n_{1}}\left(T_{i} s+1\right) \prod\limits_{j=1}^{n_{2}}\left(T_{j}^{2} s^{2}+2 \xi T_{j} s+1\right)} G(s)=Ksνi=1n1(Tis+1)j=1n2(Tj2s2+2ξTjs+1)k=1m1(τks+1)l=1m2(τl2s2+2ξτls+1)

尾1标准型的系数K称为增益

在上图所示的系统中,有如下几个重要的传递函数

开环传递函数为
G ( s ) H ( s ) = B ( s ) ε ( s ) = G 1 ( s ) G 2 ( s ) H ( s ) G(s) H(s)=\frac{B(s)}{\varepsilon(s)}=G_{1}(s) G_{2}(s) H(s) G(s)H(s)=ε(s)B(s)=G1(s)G2(s)H(s)
输出响应输入的闭环传递函数为
Φ ( s ) = C ( s ) R ( s ) = G 1 ( s ) G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi(s)=\frac{C(s)}{R(s)}=\frac{G_{1}(s) G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)} Φ(s)=R(s)C(s)=1+G1(s)G2(s)H(s)G1(s)G2(s)
偏差响应输入的闭环传递函数为
Φ ε ( s ) = ε ( s ) R ( s ) = 1 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi_{\varepsilon}(s)=\frac{\varepsilon(s)}{R(s)}=\frac{1}{1+G_{1}(s) G_{2}(s) H(s)} Φε(s)=R(s)ε(s)=1+G1(s)G2(s)H(s)1
输出响应扰动的闭环传递函数为
Φ n ( s ) = C ( s ) N ( s ) = G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi_{n}(s)=\frac{C(s)}{N(s)}=\frac{G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)} Φn(s)=N(s)C(s)=1+G1(s)G2(s)H(s)G2(s)
偏差响应扰动的闭环传递函数为
Φ ε n ( s ) = ε ( s ) N ( s ) = − G 2 ( s ) H ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi_{\varepsilon n}(s)=\frac{\varepsilon(s)}{N(s)}=\frac{-G_{2}(s) H(s)}{1+G_{1}(s) G_{2}(s) H(s)} Φεn(s)=N(s)ε(s)=1+G1(s)G2(s)H(s)G2(s)H(s)

传递函数的性质

(1)G(s)是复数,是关于s的有理分式,所有系数均为实数。在实际物理系统中满足 m ≤ n m \le n mn

(2)G(s)只与系统自身的结构参数有关,与输入量、输出量、扰动量等外部因素无关,是系统的固有属性

(3)G(s)与系统的微分方程直接关联,零初始条件下,传递函数与微分方程一一对应,即用传递函数中s置换微分方程中的 d d t \frac{d}{dt} dtd

(4) G ( s ) = L [ k ( t ) ] G(s)=L[k(t)] G(s)=L[k(t)],k(t)为系统在零初始条件下的单位脉冲响应

(5)G(s)与s平面上的零极点图相对应(缺少增益信息)

(6)传递函数可以有实数或者复数零极点。若有复零点或极点,则它们必为共轭的复数零点或极点

(7)不同系统或元件只要内部特性相同,可能具有相同传递函数

(8)传递函数是在零初始条件下进行的

(9)不同的元部件可以有相同的传递函数

(10)若输入输出变量选择不同,同一部件可以有不同的传递函教

传递函数的局限性

(1)原则上不能反映非零初始条件时系统响应的全部信息

(2)适合于描述单输入单输出系统

(3)只适用于描述线性定常系统

上文微分方程数学模型中的电路图

对应的微分方程为
u o R 2 + C d u o d t = − u i R 1 \frac{u_o}{R_2}+C\frac{du_o}{dt}=-\frac{u_i}{R_1} R2uo+Cdtduo=R1ui
其左右各自拉氏变换,得
U 0 ( s ) R 2 + C s U 0 ( s ) = − U i ( s ) R 1 \frac{U_{0}(s)}{R_{2}}+C s U_{0}(s)=-\frac{U_{i}(s)}{R_{1}} R2U0(s)+CsU0(s)=R1Ui(s)
传递函数为
G ( s ) = U o ( s ) U i ( s ) = − 1 R 1 1 R 2 + C s = − R 2 R 2 R 1 C s + R 1 G(s)=\frac{U_{o}(s)}{U_{i}(s)}=-\frac{\frac{1}{R_{1}}}{\frac{1}{R_{2}}+C s}=-\frac{R_{2}}{R_{2} R_{1} C s+R_{1}} G(s)=Ui(s)Uo(s)=R21+CsR11=R2R1Cs+R1R2

环节:具有相同形式传递函数的元部件的分类

典型环节

  1. 比例环节

    微分方程
    c = K ⋅ r c=K \cdot r c=Kr
    传递函数
    K K K

  2. 惯性环节

    微分方程
    T c ˙ + c = r T \dot{c}+c=r Tc˙+c=r
    传递函数
    1 T s + 1 \frac{1}{T s+1} Ts+11

  3. 振荡环节

    微分方程
    T 2 c ¨ + 2 ξ T c ˙ + c = r 0 < ξ < 1 \begin{gathered} T^{2} \ddot{c}+2 \xi T \dot{c}+c=r \\ 0<\xi<1 \end{gathered} T2c¨+2ξTc˙+c=r0<ξ<1
    传递函数
    1 T 2 s 2 + 2 ξ T s + 1 \frac{1}{T^{2} s^{2}+2 \xi T s+1} T2s2+2ξTs+11

  4. 积分环节

    微分方程
    c ˙ = r \dot{c}=r c˙=r
    传递函数
    1 s \frac{1}{s} s1

  5. 微分环节

    微分方程
    c = r ˙ c=\dot{r} c=r˙
    传递函数
    S \boldsymbol{S} S

  6. 一阶复合微分环节

    微分方程
    c = τ r ˙ + r c=\tau \dot r+r c=τr˙+r
    传递函数
    τ s + 1 \tau s+1 τs+1

  7. 二阶复合微分环节

    微分方程
    c = τ 2 r ¨ + 2 τ ξ r + r c=\tau^{2} \ddot{r}+2 \tau \xi r+r c=τ2r¨+2τξr+r
    传递函数
    τ 2 s 2 + 2 ξ τ s + 1 \tau^{2} s^{2}+2 \xi \tau s+1 τ2s2+2ξτs+1

任一传递函数都可以看做典型环节的组合

系统结构图

如下图所示,控制系统可以通过结构图来表示控制系统不同信号之间的相互关系。结构图一方面可以直观地反映整个系统的原理结构,描述各元部件之间的内在联系,另一方面对系统进行了精确的定量描述。能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能,但不能反映非零条件下的动态性能。

结构图的组成有

  1. 信号线:是带有箭头的有向线段,箭头表示信号的流向。在信号线旁边标记信号的时间函数或象函数。

  2. 引出点(取出点、分支点):表示信号引出或测量的位置。从同一位置引出的信号在数值和性质上完全相同。

  3. 综合点(加减点、比较点):表示对两个以上的信号进行加减运算,“+”表示相加,“-”表示相减,“+”可以省略

    进行相加或相减的量应具有相同的量纲单位

  4. 方框:表示对输入信号进行数学变换,产生输出信号

    信号线的箭头指向方框的为输入信号,箭头离开方框的为输出信号。方框中写入相应的数学变换表达式,通常是传递函数。

对确定系统可以通过以下方式绘制结构图

  1. 确定系统的输入量和输出量
  2. 建立原始的微分方程和代数方程
  3. 对原始方程进行拉氏变换,并作出相应的子方块图
  4. 置系统的输入变量于左端,输出变量于右端
  5. 按系统中各变量的传递顺序,依次将各子方块图连接起来

对同一系统,在确定了输入与输出后,其结构图具有非唯一性。不同的结构图所表达的总的输入输出关系是等效的,由此得到的系统传递函数是确定唯一的,不同的是中间变量。

结构图中的方框≠实际元部件

结构图的基本连接方式

  1. 串联:方框与方框首尾相连,前一方框的输出为后一个的输入

    等效传递函数
    G ( s ) = G 1 ( s ) ⋅ G 2 ( s ) G(s) = G_1(s)\cdot G_2(s) G(s)=G1(s)G2(s)

  2. 并联:几个方框具有同一个输入,而各方框输出的代数和为总的输出

    等效传递函数
    G ( s ) = G 1 ( s ) + G 2 ( s ) G(s)=G_1(s)+G_2(s) G(s)=G1(s)+G2(s)

  3. 反馈:前一方框的输出为另一方框的输入,得到的输出再返回作用于前一方框的输入端

    等效传递函数
    Φ ( s ) = G 1 ( s ) 1 ∓ G 1 ( s ) G 2 ( s ) \Phi (s)=\frac{G_1(s)}{1 \mp G_1(s) G_2(s)} Φ(s)=1G1(s)G2(s)G1(s)
    前向通路:从输入到输出的信号通路;其传递函数 G 1 ( s ) G_1(s) G1(s)为前向通路传递函数

    反馈通路:从输出反送到输入的信号通路;其传递函数 G 2 ( s ) G_2(s) G2(s)为反馈通路传递函数

    对于负反馈,当 G 2 ( s ) = 1 G_2(s)=1 G2(s)=1时,称为单位反馈

结构图等效变换

  1. 串联、并联、反馈可以根据上述等效传递函数变成一个方框

  2. 综合点移动

    综合点前移,在移动的支路上除以综合点跨越方框的传递函数。

    可以变换为

    $$ C(s)=G(s) R(s) \pm Q(s)=G(s)[R(s) \pm Q(s) / G(s)] $$

    综合点后移,在移动的支路上乘以综合点跨越方框的传递函数。

    可以变换为

    $$ C(s)=G(s)(R(s) \pm Q(s))=G(s) R(s) \pm G(s) Q(s) $$ 两个或多个相邻的综合点可以任意移动
  3. 引出点移动

    引出点前移,在移动的支路上乘以引出点跨越的方框的传递函数。

    可以变换为

    引出点后移,在移动的支路上除以引出点跨越的方框的传递函数。

    可以变换为

    两个或多个相邻的引出点间可以任意移动

  4. 引出点和综合点间的移动

    可以变换为

结构图等效化简的思路如下:

把引出点向邻近的引出点方向移动,把综合点向邻近的综合点方向移动,使得等效后的结构图中,引出点与引出点相邻,综合点与综合点相邻,最终把交叉的现象消除。对多回路相互嵌套的情况,则由内至外进行等效变换。

信号流图

如下图所示,信号流图是由节点和支路组成的信号传递网络。

信号流图的组成有

  1. 节点:用“ο”表示。节点表示变量或信号。其值等于所有进入该节点的信号之和。

    输入节点(源节点):只有输出支路的节点。表示系统的输入变量。如节点 x 1 x_1 x1

    输出节点(阱节点):只有输入支路的节点。表示系统的输出变量。如节点 x 6 x_6 x6

    混合节点:既有输入支路又有输出支路的节点。如其余节点。

    信号流图中至少包括一个输入节点和一个输出节点

  2. 支路:连接两个节点的定向线段。

  3. 支路增益:支路旁边标注的传递函数,表示两个节点变量的因果关系。

信号流图的相关术语:

  1. 通路:从某一节点开始,沿支路箭头方向,经过各相连支路到另一节点所构成的路径
  2. 通路增益:通路中各支路增益的乘积
  3. 前向通路:指从输入节点开始并终止于输出节点且与其它节点相交不多于一次的通路
  4. 前向通路增益:前向通路的各增益乘积
  5. 回路:通路的终点就是通路的起点,并且与任何其它节点相交不多于一次的通路称为回路
  6. 回路增益:回路中各支路增益的乘积称为回路增益
  7. 不接触回路与接触回路:一信号流图有多个回路,各回路之间没有任何公共节点,则称为不接触回路,反之称为接触回路。

由确定系统绘制信号流图的方法与绘制结构图的方法类似

由已知的结构图绘制信号流图的方法如下:

  1. 将结构图中系统的输入信号、输出信号、各综合点的输出信号、引出点的引出信号和方块的输出信号作为节点

    (1)当综合点(或引出点)在方框的输出端时,可以只为综合点的输出信号(或引出点的引出信号)建立节点

    (2)多个引出点相邻,可以只为这些引出信号建立一个节点

    (3)多个综合点相邻,可以只为最后一个综合点的输出信号建立节点

    (4)引出点和综合点相邻,如果引出点在综合点的输出端,可以只为引出点的引出信号建立节点;如果引出点在综合点的输入端,需要分别为引出点和综合点的输出建立节点

  2. 把信号的传递用支路连接

  3. 将传递函数作为支路增益

  4. 综合点信号相减体现为支路增益为负

梅森公式

梅森公式用以在无需对结构图或信号流图进行结构化简的情况下求出传递函数
G ( s ) = ∑ k = 1 m P k Δ k Δ G(s)=\frac{\sum \limits_{k=1}^{m} P_{k} \Delta_{k}}{\Delta} G(s)=Δk=1mPkΔk
G ( s ) G(s) G(s):待求传递函数

Δ \Delta Δ:特征式
Δ = 1 − ∑ 1 n L i + ∑ 1 n 2 L i L j − ∑ 1 n 3 L i L j L k + ⋯ \Delta=\mathbf{1}-\sum_{1}^{n} \boldsymbol{L}_{i}+\sum_{1}^{n_{2}} \boldsymbol{L}_{i} \boldsymbol{L}_{j}-\sum_{1}^{n_{3}} \boldsymbol{L}_{i} \boldsymbol{L}_{j} \boldsymbol{L}_{k}+\cdots Δ=11nLi+1n2LiLj1n3LiLjLk+
∑ L i \sum \mathbf{L}_{\mathbf{i}} Li:所有回路( n n n条)的回路增益之和

∑ L i L j \sum \mathbf{L}_{\mathbf{i}} \mathbf{L}_{\mathbf{j}} LiLj:所有两两互不接触回路( n 2 n_2 n2条)的回路增益乘积之和

∑ L i L j L k \sum \mathbf{L}_{\mathbf{i}} \mathbf{L}_{\mathbf{j}} \mathbf{L}_{\mathbf{k}} LiLjLk:所有三三互不接触回路( n 3 n_3 n3条)的回路增益乘积之和

P k \mathbf{P}_{\mathbf{k}} Pk:从输入节点到输出节点第k条前向通路的增益

Δ k \Delta_{k} Δk:余子式,指在 Δ Δ Δ中,将与第k条前向通路相接触的回路除去后所余下的部分

m:从输入节点到输出节点所有前向通路的条数

例如以下的信号流图

共有4个回路

n=4

L 1 = − G 2 H 2 L_{1}=-G_{2} H_{2} L1=G2H2,B-E-B

L 2 = − G 3 H 4 L_{2}=-G_{3} H_{4} L2=G3H4,E-F-E

L 3 = − G 4 G 5 H 3 L_{3}=-G_{4} G_{5} H_{3} L3=G4G5H3,G-H-G

L 4 = − G 1 G 2 G 3 G 4 G 5 G 6 H 1 L_{4}=-G_{1} G_{2} G_{3} G_{4} G_{5} G_{6} H_{1} L4=G1G2G3G4G5G6H1,A-B-E-F-G-H-I-A

回路 L 1 L_1 L1 L 3 L_3 L3没有相互接触, L 1 L 3 = ( − G 2 H 2 ) ( − G 4 G 5 H 3 ) = G 2 G 4 G 5 H 2 H 3 L_{1} L_{3}=\left(-G_{2} H_{2}\right)\left(-G_{4} G_{5} H_{3}\right)=G_{2} G_{4} G_{5} H_{2} H_{3} L1L3=(G2H2)(G4G5H3)=G2G4G5H2H3

回路 L 2 L_2 L2 L 3 L_3 L3没有相互接触, L 2 L 3 = ( − G 3 H 4 ) ( − G 4 G 5 H 3 ) = G 3 G 4 G 5 H 3 H 4 L_{2} L_{3}=\left(-G_{3} H_{4}\right)\left(-G_{4} G_{5} H_{3}\right)=G_{3} G_{4} G_{5} H_{3} H_{4} L2L3=(G3H4)(G4G5H3)=G3G4G5H3H4

没有三个及以上的互不接触回路

因此特征式为
Δ = 1 − ∑ L i + ∑ L i L j = 1 + G 2 H 2 + G 3 H 4 + G 4 G 5 H 3 + G 1 G 2 G 3 G 4 G 5 G 6 H 1 + G 2 G 4 G 5 H 2 H 3 + G 3 G 4 G 5 H 3 H 4 \begin{aligned} \Delta &=1-\sum L_{i}+\sum L_{i} L_{j} \\ &=1+G_{2} H_{2}+G_{3} H_{4}+G_{4} G_{5} H_{3}+G_{1} G_{2} G_{3} G_{4} G_{5} G_{6} H_{1} \\ &+G_{2} G_{4} G_{5} H_{2} H_{3}+G_{3} G_{4} G_{5} H_{3} H_{4} \end{aligned} Δ=1Li+LiLj=1+G2H2+G3H4+G4G5H3+G1G2G3G4G5G6H1+G2G4G5H2H3+G3G4G5H3H4
共有1条前向通路

m=1

P 1 = G 1 G 2 G 3 G 4 G 5 G 6 P_{1}=G_{1} G_{2} G_{3} G_{4} G_{5} G_{6} P1=G1G2G3G4G5G6,R-A-B-C-D-E-F-G-H-I-C

所有回路均与前向通路相接触, Δ 1 = 1 \Delta_{1}=1 Δ1=1

因此
G ( s ) = p 1 Δ 1 Δ = G 1 G 2 G 3 G 4 G 5 G 6 1 + G 2 H 2 + G 3 H 4 + G 4 G 5 H 3 + G 1 G 2 G 3 G 4 G 5 G 6 H 1 + G 2 G 4 G 5 H 2 H 3 + G 3 G 4 G 5 H 3 H 4 \begin{aligned} &G(s)=\frac{p_{1} \Delta_{1}}{\Delta} \\ &=\frac{G_{1} G_{2} G_{3} G_{4} G_{5} G_{6}}{1+G_{2} H_{2}+G_{3} H_{4}+G_{4} G_{5} H_{3}+G_{1} G_{2} G_{3} G_{4} G_{5} G_{6} H_{1}+G_{2} G_{4} G_{5} H_{2} H_{3}+G_{3} G_{4} G_{5} H_{3} H_{4}} \end{aligned} G(s)=Δp1Δ1=1+G2H2+G3H4+G4G5H3+G1G2G3G4G5G6H1+G2G4G5H2H3+G3G4G5H3H4G1G2G3G4G5G6

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值