LLaMA-Factory的概念与搭建

LLaMA-Factory是一个大型语言模型(Large Language Model)的训练与微调框架(Factory)。提供了基于Gradio的网页版工作台。

笔者在2025.3.30对其进行了解和部署,根据后续需要进行更新。

#1.环境搭建

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

cd LLaMA-Factory

conda create --name LLaMA-Factory python=3.10
conda activate LLaMA-Factory
pip install -e ".[torch,metrics]"

llamafactory-cli version	# 验证安装成功

#2.启动Gradio WebUI界面

llamafactory-cli webui		# `whereis llamafactory`看看执行文件在哪
# or
python src/webui.py

Tip:基于Gradio的WebUI代码位于src/llamafactory/webui

Bug处理:启动webui报错

File "/home/jin/anaconda3/envs/LLaMA-Factory/lib/python3.10/site-packages/gradio_client/utils.py", line 898, in get_type
 if "const" in schema:
TypeError: argument of type 'bool' is not iterable

解决:pip install pydantic==2.10.6

#3.WebUI的训练设置(待补充)

设置项:Model name

对于XX-YY-ZZ,如Baichuan-13B-Base

  • XX:模型名称
  • YY:参数量
  • ZZ:Base表示预训练模型,Chat表示基于Base微调的适应聊天的模型
设置项:Finetuning method

full

freeze

lora

#4.相关概念(待补充)

Q-LoRA

一种在消费级硬件上微调大型语言模型的微调方法。

### LLaMA-Factory PAI 平台使用指南 PAI (Platform of Artificial Intelligence) 是阿里云提供的人工智能开发平台,支持多种机器学习框架和工具。对于希望利用Llama-factory在PAI平台上进行模型训练和服务部署的研究人员来说,理解如何配置和运行这些组件至关重要。 #### 启动LLaMA-Factory Web UI界面 为了便于交互式地调整参数并优化模型性能,在本地环境中可以通过特定命令来启动LLaMA-Factory的Web UI界面[^2]: ```bash export USE_MODELSCOPE_HUB=1 && llamafactory-cli webui ``` 此命令设置了一个环境变量`USE_MODELSCOPE_HUB`为真值,并执行了`llamafactory-cli`客户端程序中的`webui`子命令,从而开启了图形化操作界面。 #### 将模型转换成服务 考虑到实际应用需求,通常会将经过训练后的模型转化为可访问的服务形式。这不仅简化了其他系统的集成过程,还提高了资源利用率。基于上述描述,无论是采用简单的TGI方案还是针对生产级别的vllm部署方式,最终目的都是为了让模型能够作为稳定可靠的服务对外提供功能[^1]。 #### 示例代码片段展示如何创建API端点 下面是一个Python脚本的例子,它展示了怎样通过Flask框架快速搭建起一个RESTful API服务器,使得外部应用程序能方便地请求预测结果: ```python from flask import Flask, request, jsonify import torch app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() input_text = data['text'] # 假设model已经加载完毕 output = model(input_text) return jsonify({"result": str(output)}) if __name__ == '__main__': app.run(host='0.0.0.0') ``` 该例子仅用于说明概念;具体实现细节取决于所使用的深度学习库以及目标应用场景的要求。 #### 官方文档社区支持的重要性 除了官方提供的演示案例外,积极参开源项目讨论区也是获取最新资讯和技术帮助的有效途径之一。许多开发者会在GitHub Issues页面分享自己的经验和解决方案,这对于新手而言是非常宝贵的参考资料源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北上ing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值