Fisher 信息量
设
Sθ(x)=(∂lnpθ(x)∂θ1,...,∂lnpθ(x)∂θk)′
满足
-
Sθ(x) 对一切 θ∈Θ 有定义;
-
EθSθ(x)=0 , ∀θ∈Θ ;
-
Eθ∥Sθ(.)∥2<∞
称
I(θ)=Var(Sθ(x))=Eθ[Sθ(x)S′θ(x)]
为Fisher信息阵, k=1 时称作Fisher信息量.
C-R下界
设 g(θ) 为待估参数, Δ=ddθg(θ) ,称
ΔI−1(θ)Δ′
为 g(θ) 的无偏估计的Cramer-Rao下界,简称C-R下界.
估计的效
T(X)
是
g(θ)
的一个无偏估计,称
$(g′(θ))2I−1(θ)/Varθ(T(X))
为 T(X) 的效,如果效为1,则称 T(X) 为 g(θ) 的有效无偏估计.