奥卡姆剃刀原理什么场景使用?

如非必要,勿增实体

对不确定性或对可能性进行描述这件事就是概率论的核心议题

如果我们就是概率论的建立者,面对这个问题应该如何解决?

v1.0版本

优点:进行了数学符号化,定义出来的这个体系自洽

缺点:不够简约

所以就需要用到奥卡姆剃刀原理

只需要把那些不可再分的原子事件给列出来,对它们的可能性进行赋值就可以。

于是对v1.0版本进行升级就来到了v2.0版本

v2.0版本

 

右边P(S)表示的是S这个集合的幂集

这个时候就可以规定这样一个函数,只规定了原子事件的函数值

这样对原子事件进行区分之后,还有一个额外的好处

 

终于可以确定可能性的最大值是多少了

把所有的原子事件整合起来,把它们看做一个事件,它的可能性就是最大值。

 所以对f函数进行重新修改一下,使用归一后的红色的K作为函数值。

面对连续的情况,事件可以无限细分,发现如果通过原子事件作为思考的起点,基于它,去建立描述可能性的这个数学体系,可能就会出现问题。

 

如果想把连续的情况也包括进来,左边表格作为定义,作为地基去建立右边表格这个想法就会遇到问题。

 

怎么办呢?

数学体系是否可以利用右边这个表格作为地基去建立呢?于是就可以继续升级,升级到3.0版本

开始重点看连续情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值