如非必要,勿增实体
对不确定性或对可能性进行描述这件事就是概率论的核心议题
如果我们就是概率论的建立者,面对这个问题应该如何解决?
v1.0版本
优点:进行了数学符号化,定义出来的这个体系自洽
缺点:不够简约
所以就需要用到奥卡姆剃刀原理
只需要把那些不可再分的原子事件给列出来,对它们的可能性进行赋值就可以。
于是对v1.0版本进行升级就来到了v2.0版本
v2.0版本
右边P(S)表示的是S这个集合的幂集
这个时候就可以规定这样一个函数,只规定了原子事件的函数值
这样对原子事件进行区分之后,还有一个额外的好处
终于可以确定可能性的最大值是多少了
把所有的原子事件整合起来,把它们看做一个事件,它的可能性就是最大值。
所以对f函数进行重新修改一下,使用归一后的红色的K作为函数值。
面对连续的情况,事件可以无限细分,发现如果通过原子事件作为思考的起点,基于它,去建立描述可能性的这个数学体系,可能就会出现问题。
如果想把连续的情况也包括进来,左边表格作为定义,作为地基去建立右边表格这个想法就会遇到问题。
怎么办呢?
数学体系是否可以利用右边这个表格作为地基去建立呢?于是就可以继续升级,升级到3.0版本
开始重点看连续情况