【线性代数】1.5矩阵的秩

1.矩阵的秩

1.概念

  在 m × n m\times n m×n的矩阵 A A A中,任取 k k k k k k列( k ⩽ m , k ⩽ n k\leqslant m,k\leqslant n km,kn),位于这些行与列的交叉点上的 k 2 k^2 k2个元组按其在原来矩阵 A A A中的次序可构成一个 k k k阶行列式,称其为矩阵 A A A的一个 k k k子式.
  矩阵 A A A的非零子式的最高阶系数称为矩阵 A A A,记为 r ( A ) r(A) r(A).零矩阵的秩规定为0.

2.理解

r ( A ) = r ⇔ A r(A)=r\Leftrightarrow A r(A)=rA r r r阶子式不为0,任何 r + 1 r+1 r+1阶子式(若还有)必为0.
r ( A ) < r ⇔ A r(A)<r\Leftrightarrow A r(A)<rA中必有一个 r r r阶子式为0.
r ( A ) ⩾ r ⇔ A r(A)\geqslant r\Leftrightarrow A r(A)rA r r r阶子式不为0.

特别地, r ( A ) = 0 ⇔ A = O r(A)=0\Leftrightarrow A=O r(A)=0A=O.
A ≠ 0 ⇔ r ( A ) ⩾ 1 A\neq0\Leftrightarrow r(A)\geqslant1 A=0r(A)1
若是 A A A n n n的矩阵,
r ( A ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A 可 逆 r(A)=n\Leftrightarrow\left|A\right|\neq0\Leftrightarrow A\mathrm{可逆} r(A)=nA=0A
r ( A ) < n ⇔ ∣ A ∣ = 0 ⇔ A 不 可 逆 r(A)<n\Leftrightarrow\left|A\right|=0\Leftrightarrow A\mathrm{不可逆} r(A)<nA=0A
若是 A A A m × n m\times n m×n的矩阵,则 r ( A ) ⩽ m i n ( m , n ) r(A)\leqslant min\left(m,n\right) r(A)min(m,n)

3.公式

r ( A ) = r ( A T ) ; r ( A T A ) = r ( A ) ; 当 k ≠ 0 时 , r ( k A ) = r ( A ) ; r ( A + B ) ⩽ r ( A ) + r ( B ) ; r ( A B ) ⩽ m i n ( r ( A ) , r ( B ) ) ; 若 A 可 逆 , 则 r ( A B ) = r ( B ) , r ( B A ) = r ( B ) ; 若 A 是 m × n 矩 阵 , B 是 n × s 矩 阵 , A B = O , 则 r ( A ) + r ( B ) ⩽ n ; r [ A O O B ] = r ( A ) + r ( B ) 若 A ∼ B , 则 r ( A ) = r ( B ) , r ( A + k E ) = r ( B + k E ) r\left(A\right)=r\left(A^T\right);r\left(A^TA\right)=r\left(A\right);\\当k\neq0时,r\left(kA\right)=r\left(A\right);\\r\left(A+B\right)\leqslant r\left(A\right)+r\left(B\right);\\r\left(AB\right)\leqslant min\left(r\left(A\right),r\left(B\right)\right);\\若A\mathrm{可逆},则r\left(AB\right)=r\left(B\right),r\left(BA\right)=r\left(B\right);\\若A是m\times n\mathrm{矩阵},B是n\times s\mathrm{矩阵},AB=O,则r\left(A\right)+r\left(B\right)\leqslant n;\\r\begin{bmatrix}A&O\\O&B\end{bmatrix}=r\left(A\right)+r\left(B\right)\\若A\sim B,则r\left(A\right)=r\left(B\right),r(A+kE)=r(B+kE) r(A)=r(AT);r(ATA)=r(A);k=0,r(kA)=r(A);r(A+B)r(A)+r(B);r(AB)min(r(A),r(B));A,r(AB)=r(B),r(BA)=r(B);Am×n,Bn×s,AB=O,r(A)+r(B)n;r[AOOB]=r(A)+r(B)AB,r(A)=r(B),r(A+kE)=r(B+kE)

2.线性方程组

1.非齐次线性方程组

方 程 组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2          ⋮                    ⋮                                                ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \mathrm{方程组}\left\{\begin{array}{l}a_{11}x_1+a_{12}x2+\cdots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x2+\cdots+a_{2n}x_n=b_2\\\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\vdots\\a_{m1}x_1+a_{m2}x2+\cdots+a_{mn}x_n=b_m\end{array}\right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm
称为 n n n个未知数 m m m个方程的非齐次线性方程组,其中 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn代表 n n n个未知量, m m m是方程的个数, m m m可以等于 n n n,也可以大于 n n n或者小于 n n n a i j a_{ij} aij是第 ( i = 1 , 2 , ⋯   , m ) (i=1,2,\cdots,m) (i=1,2,,m)个方程中 x j x_{j} xj ( j = 1 , 2 , ⋯   , n ) (j=1,2,\cdots,n) (j=1,2,,n)的系数, b i b_{i} bi ( i = 1 , 2 , ⋯   , m ) (i=1,2,\cdots,m) (i=1,2,,m)是第 i i i个方程的常数项.

2.齐次线性方程组

  如果 b i = 0 b_{i}=0 bi=0 ( ∀ i = 1 , 2 , ⋯   , m ) (\forall i=1,2,\cdots,m) (i=1,2,,m),则方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0          ⋮                    ⋮                                                ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \left\{\begin{array}{l}a_{11}x_1+a_{12}x2+\cdots+a_{1n}x_n=0\\a_{21}x_1+a_{22}x2+\cdots+a_{2n}x_n=0\\\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\vdots\\a_{m1}x_1+a_{m2}x2+\cdots+a_{mn}x_n=0\end{array}\right. a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0
齐次线性方程组.

3.增广矩阵

非齐次线性方程组的全体系数及常数项所构成的矩阵
A ‾ = [ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ] \overline A=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}&b_1\\a_{21}&a_{22}&\cdots&a_{2n}&b_2\\\vdots&\vdots&&\vdots&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\end{bmatrix} A=a11a21am1a12a22am2a1na2namnb1b2bm

4.系数矩阵

全体系数组成的矩阵
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] A=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{bmatrix} A=a11a21am1a12a22am2a1na2namn

5.矩阵表示

非齐次线性方程组用矩阵表示: A x = b Ax=b Ax=b,其中 x = [ x 1 , x 2 , ⋯   , x n ] T x=\begin{bmatrix}x_1,&x_2,&\cdots,&x_n\end{bmatrix}^T x=[x1,x2,,xn]T b = [ b 1 , b 2 , ⋯   , b m ] T b=\begin{bmatrix}b_1,&b_2,&\cdots,&b_m\end{bmatrix}^T b=[b1,b2,,bm]T

6.线性方程组的初等变换

(1)用一个非零常数乘方程的两边;
(2)把某方程的 k k k倍加到另一方程上;
(3)互换两个方程的位置;

7.基础解系

8.定理

3.作业

1.在这里插入图片描述
2.
在这里插入图片描述
在这里插入图片描述

3.总结现在为止矩阵可逆的充要条件

n 阶 矩 阵 A 可 逆 ⇔ ∣ A ∣ ≠ 0 ⇔ r ( A ) = n ⇔ A 的 列 ( 行 ) 向 量 组 线 性 无 关 ⇔ A = P 1 P 2 ⋯ P s P i ( i = 1 , 2 , ⋯   , s ) 是 初 等 矩 阵 ⇔ A 与 单 位 矩 阵 等 价 ⇔ 0 不 是 矩 阵 A 的 特 征 值 n\mathrm{阶矩阵}A\mathrm{可逆}\\ \Leftrightarrow\left|A\right|\neq0\\\Leftrightarrow r(A)=n\\\Leftrightarrow A\mathrm{的列}(行)\mathrm{向量组线性无关}\\\Leftrightarrow A=P_1P_2\cdots P_sP_i(i=1,2,\cdots,s)\mathrm{是初等矩阵}\\\Leftrightarrow A\mathrm{与单位矩阵等价}\\\Leftrightarrow0\mathrm{不是矩阵}A\mathrm{的特征值} nAA=0r(A)=nA()线A=P1P2PsPi(i=1,2,,s)A0A

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值