这里写自定义目录标题
1.向量
1.简介
1.笛卡尔坐标系
相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴
互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡
尔斜角坐标系。
2.向量
具有大小和方向的量。
3.标量
只有数值大小,没有方向的量。
2.向量基本运算
设 n n n维向量 α = [ a 1 , a 2 , ⋯ , a n ] T \alpha=\left[a_1,a_2,\cdots,a_n\right]^T α=[a1,a2,⋯,an]T, β = [ b 1 , b 2 , ⋯ , b n ] T \beta=\left[b_1,b_2,\cdots,b_n\right]^T β=[b1,b2,⋯,bn]T,则
1.向量加法
直角坐标系中向量的加减就是对应坐标分量的加减。 α + β = [ a 1 + b 1 , a 2 + b 2 , ⋯ , a n + b n ] \alpha+\beta=\left[a_1+b_1,a_2+b_2,\cdots,a_n+b_n\right] α+β=[a1+b1,a2+b2,⋯,an+bn]
2. 向量数乘
直角坐标系中向量的数乘就是向量坐标的分量分别乘该数。 k α = [ k a 1 , k a 2 , ⋯ , k a n ] T k\alpha=\left[ka_1,ka_2,\cdots,ka_n\right]^T kα=[ka1,ka2,⋯,kan]T
3. 向量内积
两个向量的内积为向量的模长的乘积再乘两个向量夹角的余弦值。内积结果为一个数。
公式: [ α , β ] = α T β = β T α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \left[\alpha,\beta\right]=\alpha^T\beta=\beta^T\alpha=a_1b_1+a_2b_2+\cdots+a_nb_n [α,β]=αTβ=βTα=a