【线性代数】1.6矩阵的特征值和特征向量

这篇博客介绍了线性代数中的向量概念,包括向量的定义、基本运算(加法、数乘、内积、投影)、不同范数类型及其应用。接着,重点讲解了矩阵的特征值和特征向量,阐述了它们的定义、计算方法以及与矩阵相似的关系。通过例题进一步加深了对这些概念的理解。
摘要由CSDN通过智能技术生成

1.向量

1.简介

1.笛卡尔坐标系

  相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴
互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡
尔斜角坐标系。

2.向量

  具有大小和方向的量。

3.标量

  只有数值大小,没有方向的量。

2.向量基本运算

n n n维向量 α = [ a 1 , a 2 , ⋯   , a n ] T \alpha=\left[a_1,a_2,\cdots,a_n\right]^T α=[a1,a2,,an]T β = [ b 1 , b 2 , ⋯   , b n ] T \beta=\left[b_1,b_2,\cdots,b_n\right]^T β=[b1,b2,,bn]T,则

1.向量加法

  直角坐标系中向量的加减就是对应坐标分量的加减。 α + β = [ a 1 + b 1 , a 2 + b 2 , ⋯   , a n + b n ] \alpha+\beta=\left[a_1+b_1,a_2+b_2,\cdots,a_n+b_n\right] α+β=[a1+b1,a2+b2,,an+bn]

2. 向量数乘

  直角坐标系中向量的数乘就是向量坐标的分量分别乘该数。 k α = [ k a 1 , k a 2 , ⋯   , k a n ] T k\alpha=\left[ka_1,ka_2,\cdots,ka_n\right]^T kα=[ka1,ka2,,kan]T

3. 向量内积

  两个向量的内积为向量的模长的乘积再乘两个向量夹角的余弦值。内积结果为一个数。
公式 [ α , β ] = α T β = β T α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \left[\alpha,\beta\right]=\alpha^T\beta=\beta^T\alpha=a_1b_1+a_2b_2+\cdots+a_nb_n [α,β]=αTβ=βTα=a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值