【数学基础知识】莫利定理(Morley‘s Theorem)及其直观证明

前两天看了和三角形相关的一个莫利定理,觉得较为有趣,所以做一个记录。

莫利定理(Morley’s Theorem)

将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形。
在这里插入图片描述
看了其他人对该定理的证明,大多都是用了一堆推导,或者用高中的一些正弦余弦定理公式,个人觉得看着较为枯燥。

所以本文从一种直观角度进行证明,过程中仅用到初中知识,但是其中的思想较为有趣。

为证明该定理,首先证明一个引理。

引理

已知: △ A B C \triangle ABC ABC中,BD平分 ∠ A B C \angle ABC ABC,CE平分 ∠ A C B \angle ACB ACB B D ∩ C E = F BD \cap CE = F BDCE=F

求证: ∠ B F C = 9 0 ∘ + 1 2 ∠ B A C \angle BFC = 90^\circ + \frac{1}{2}\angle BAC BFC=90+21BAC
在这里插入图片描述
证明:
由题意知F为 △ A B C \triangle ABC ABC 的内心。

∠ B F C = ∠ 7 + ∠ 8 = ( ∠ 2 + ∠ 3 ) + ( ∠ 1 + ∠ 5 ) = ∠ B A C + 1 2 ( ∠ A B C + ∠ B C A ) = ∠ B A C + 1 2 ( 18 0 ∘ − ∠ B A C ) = 9 0 ∘ + 1 2 ∠ B A C \begin{aligned} \angle BFC &= \angle7+\angle 8 \\ &=(\angle 2 + \angle 3) + (\angle 1 + \angle 5) \\ &= \angle BAC + \frac{1}{2}(\angle ABC + \angle BCA) \\ &= \angle BAC + \frac{1}{2}(180^\circ - \angle BAC) \\ &= 90^\circ + \frac{1}{2}\angle BAC \end{aligned} BFC=7+8=(2+3)+(1+5)=BAC+21(ABC+BCA)=BAC+21(180BAC)=90+21BAC
证毕。

该引理的等价形式:

△ A B C \triangle ABC ABC中,AG平分 ∠ B A C \angle BAC BAC, F为AG上一点, ∠ B F C = 9 0 ∘ + 1 2 ∠ B A C \angle BFC = 90^\circ + \frac{1}{2}\angle BAC BFC=90+21BAC

求证:F为 ∠ A B C \angle ABC ABC的内心。

简要证明:可以假设F不为内心,则可以取 ∠ A B C , ∠ A C B \angle ABC , \angle ACB ABC,ACB的角平分线,必与AG交于另一点 F ′ F' F。则根据之前引理的结论,必有 ∠ B F ′ C = 9 0 ∘ + 1 2 ∠ B A C = ∠ B F C \angle BF'C = 90^\circ + \frac{1}{2}\angle BAC = \angle BFC BFC=90+21BAC=BFC,从而得出 F F F F ′ F' F重合。

接下来证明莫利定理。

莫利定理的证明:

考虑如下的正三角形 P Q R PQR PQR,在三边的外面分别作一个等腰三角形,底角的大小分别为 a , b , c a, b, c a,b,c
在这里插入图片描述

a , b , c a, b, c a,b,c均为变量,规定其需满足以下形式:
a + b + c < 12 0 ∘ ,       a , b , c < 6 0 ∘ a + b + c < 120^\circ, \ \ \ \ \ a, b, c < 60^\circ a+b+c<120,     a,b,c<60

分别延长 P ′ R , R ′ Q P'R, R'Q PR,RQ等线段,延长线构成的角一定等于 a , b , c a, b, c a,b,c, 如下图所示:

在这里插入图片描述

因为已知正 △ P Q R \triangle PQR PQR的每个内角都是 6 0 ∘ 60^\circ 60, 再加上一个延长线构成的角一共是 18 0 ∘ 180^\circ 180

考虑 Q R QR QR外面的两个大角 a + b , a + c a+b, a+c a+b,a+c, 因为 a < 6 0 ∘ a < 60^\circ a<60, 且 a + b + c < 12 0 ∘ a + b+c < 120^\circ a+b+c<120
所以 Q R QR QR外面的两个大角的和 ( a + b ) + ( a + c ) < 18 0 ∘ (a+b) + (a+c) < 180^\circ (a+b)+(a+c)<180,

∴ Q R \therefore QR QR外面的两个延长线( R ′ Q , Q ′ R R'Q, Q'R RQ,QR)一定会相交。

同理QP,PR外面的两个延长线也会相交。设延长线的交点分别为A, B, C。 如下图所示:
在这里插入图片描述
易知
∠ A = 18 0 ∘ − ( a + b ) − ( a + c ) = 18 0 ∘ − ( a + b + c ) − a = 6 0 ∘ − a \begin{aligned}\angle A &= 180^\circ - (a+b) - (a+c) \\ &= 180^\circ - (a+b+c) - a \\ &= 60^\circ - a \end{aligned} A=180(a+b)(a+c)=180(a+b+c)a=60a

同理 ∠ B = 6 0 ∘ − c ,    ∠ C = 6 0 ∘ − b \angle B = 60^\circ - c,\ \ \angle C = 60^\circ - b B=60c,  C=60b

进一步,连接 P ′ P P'P PP并延长,可以发现 P ′ P P'P PP平分 ∠ B P ′ C \angle BP'C BPC, 因为 △ Q P ′ P ≅ △ R P ′ P ( S S S ) . \triangle QP'P \cong \triangle RP'P(SSS). QPPRPP(SSS).

在这里插入图片描述
又有
∠ B P C = 18 0 ∘ − a = 9 0 ∘ + 1 2 ( 18 0 ∘ − 2 a ) = 9 0 ∘ + 1 2 ∠ B P ′ C \begin{aligned} \angle BPC &= 180^\circ - a \\ &= 90^\circ + \frac{1}{2}(180^\circ - 2a) \\ &=90^\circ + \frac{1}{2}\angle BP'C \end{aligned} BPC=180a=90+21(1802a)=90+21BPC
所以根据上面引理的结论,P为 △ P ′ B C \triangle P'BC PBC的内心。

∴ B P 平 分 ∠ Q B C \therefore BP 平分 \angle QBC BPQBC, C P 平 分 ∠ R C B CP 平分 \angle RCB CPRCB

同理可证Q为 △ A B Q ′ \triangle ABQ' ABQ的内心, R为 △ A R ′ C \triangle AR'C ARC的内心。
在这里插入图片描述
从而可以得到 A Q , A R AQ, AR AQ,AR ∠ B A C \angle BAC BAC的三等分线, B Q , B P BQ, BP BQ,BP ∠ A B C \angle ABC ABC的三等分线, C P , C R CP, CR CP,CR ∠ A C B \angle ACB ACB的三等分线。

截止到这里相当于证明完了莫利定理的逆定理,即从正三角形出发构造了三等分线。

下面可以从正面推出莫利定理。

已知任意一个 △ A B C \triangle ABC ABC, 可以取任意一个正 △ P ′ Q ′ R ′ \triangle P'Q'R' PQR, 根据上面的构造方法,取

6 0 ∘ − a = 1 3 ∠ B A C 60^\circ - a = \frac{1}{3} \angle BAC 60a=31BAC,
6 0 ∘ − c = 1 3 ∠ A B C 60^\circ - c = \frac{1}{3} \angle ABC 60c=31ABC,
6 0 ∘ − b = 1 3 ∠ A C B 60^\circ - b = \frac{1}{3} \angle ACB 60b=31ACB

可以看出这种情况下一定满足 a + b + c = 12 0 ∘ a+b+c=120^\circ a+b+c=120 (上面三个等式相加), 且 a , b , c < 6 0 ∘ a,b,c < 60^\circ a,b,c<60

从而可以用上面的方法构造出一个包含三等分线的 △ A ′ B ′ C ′ \triangle A'B'C' ABC

由于选取的角度 a , b , c a,b,c a,b,c 必有 △ A ′ B ′ C ′ ∽ △ A B C ( 三 个 角 分 别 对 应 相 等 ) \triangle A'B'C' \backsim \triangle ABC(三个角分别对应相等) ABCABC()

然后可以再取 △ A B C \triangle ABC ABC 的三等分线,构成一个 △ P Q R \triangle PQR PQR,

易证得 △ P Q R ∽ △ P ′ Q ′ R ′ \triangle PQR \backsim \triangle P'Q'R' PQRPQR

△ P ′ Q ′ R ′ \triangle P'Q'R' PQR是我们取的任意正三角形, ∴ △ P Q R \therefore \triangle PQR PQR必然也是正三角形。

证毕。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
几何明珠 第三版 出版时间:2014年版 内容简介   黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书第一版于1997年由科学普及出版社出版,并获2001年湖北省优秀论著一等奖;第二版于2000年由台湾九章出版社出版。 目  录 第一章 勾股定理 §1.1定理及简史 §1.2定理证明 §1.3定理的变形与推广 §1.4定理的应用 §1.5勾股定理及其他 第二章 光反射定理 §2.1定理及简史 §2.2定理证明 §2.3定理的推广 §2.4定理的应用 第三章 黄金分割 §3.1定义及简史 §3.2黄金分割的几何作法 §3.3黄金数的各种趣式 §3.4黄金三角形、黄金矩形、黄金椭圆、黄金长方体 §3.5奇异三角形与黄金数 §3.6在几何作图中的应用 第四章 梅内劳斯定理 §4.1定理及简史 §4.2定理证明 §4.3定理的推广 §4.4定理的应用 第五章 塞瓦定理 §5.1定理及简史 §5.2定理证明 §5.3定理的变形与推广 §5.4定理的应用 第六章 秦九韶公式 §6.1公式及简史 §6.2公式的证明 §6.3公式的推广 §6.4公式的应用 第七章 托勒密定理 §7.1定理及简史 §7.2定理证明 §7.3定理的推广 §7.4定理的应用 第八章 角平分线定理 §8.1定理及简史 §8.2定理证明 §8.3定理的引伸与推广 §8.4定理的应用 第九章 阿波罗尼奥斯定理 §9.1定理及简史 §9.2定理证明 §9.3定理的引伸与推广 §9.4定理的应用 第十章 三角形的五心 §10.1定理及简史 §10.2定理证明 §10.3重心的有关性质 §10.4外心的有关性质 §10.5垂心的有关性质 §10.6内心的有关性质 §10.7旁心的有关性质 §10.8五心相关的性质 §10.9定理的推广 §10.10定理的应用 第十一章 欧拉线 §11.1定理及简史 §11.2定理证明 §11.3定理的推广 §11.4定理的应用 第十二章 欧拉定理 §12.1定理及简史 §12.2定理证明 §12.3定理的引伸与推广 §12.4定理的应用 第十三章 圆幂定理 §13.1定理及简史 §13.2定理证明 §13.3定理的推广 §13.4定理的应用 第十四章 婆罗摩及多定理 §14.1定理及简史 §14.2定理证明 §14.3定理的推广 §14.4定理的应用 第十五章 九点圆 §15.1定理及简史 §15.2定理证明 §15.3定理的引伸 第十六章 维维安尼定理 §16.1定理及简史 §16.2定理证明 §16.3定理的引伸与推广 §16.4关于正三角形的几个定理 §16.5定理的应用 第十七章 斯坦纳一雷米欧司定理 §17.1定理及简史 §17.2定理证明 §17.3定理的引伸与推广15l 第十八章 拿破仑定理 §18.1定理及简史 §18.2定理证明 §18.3定理的引伸与推广 第十九章 爱可尔斯定理 §19.1定理及简史 §19.2定理证明 §19.3定理的推广 §19.4定理的应用 第二十章 莫利定理 §20.1定理及简史 §20.2定理证明 §20.3定理的推广 第二十一章 蝴蝶定理 §21.1定理及简史 §21.2定理证明: §21.3定理的引伸与推广 §21.4其他形式的蝴蝶定理 第二十二章 西姆松定理 §22.1定理及简史 §22.2定理证明 §22.3定理的引伸与推广 §22.4定理的应用 第二十三章 笛沙格定理 §23.1定理及简史 §23.3定理证明 §23.3定理的推广 §23.4定理的应用 第二十四章 费马问题 §24.1问题及简史 §24.2问题的解 §24.3问题的引伸与推广 §24.4.结论的应用 第二十五章 帕普斯定理与帕斯卡定理 §25.1定理及其简史 §25.2定理证明 §25.3特例及推广 §25.4定理的应用 第二十六章 布里昂雄定理 §26.1定理及其简史 §26.2定理证明 §26.3特例及推广 §26.4定理的应用 第二十七章 汤普森问题 §27.1问题及简史 §27.2问题的解答 第二十八章 佩多定理 §28.1定理及其简史 §28.2定理证明 §28.3定理的引伸与推广 §28.4定理的应用 第二十九章 东方魔板七巧板 §29.1七巧板及简史 §29.2七巧板拼图 §29.3七巧板的演变与发展 第三十章 几何名题、趣题、考题 §30.1三大几何作图问题 §30.2哥尼斯堡七桥问题 §30.3完美正方形 §30.4米凯尔圆 §30.5布洛卡点与一道北大考题 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值