引言
在机器学习的实践中,特征工程和模型训练是非常重要的两个环节。特征工程决定了模型的性能上限,而模型训练则是如何优化模型来逼近上限。本文将从特征工程和模型训练两个方面,详细介绍Python进大厂比赛中的相关内容,并从实践中总结出一些应该注意的技巧和方法。
一、特征工程
特征工程是机器学习中极其重要的一环,决定了模型的性能上限。在Python进大厂比赛中,好的特征可以使得模型的得分大大提高。下面将从数据探索、特征处理、特征选择和特征生成四个方面介绍特征工程。
- 数据探索
在进行特征工程之前,我们需要对数据进行探索,以便更好地理解数据、发现异常值和缺失值等问题,并为后续的特征处理、特征选择和特征生成做好准备。数据探索的方法主要包括可视化和统计分析两种。
1.1 可视化
可视化是一种直观地展现数据分布、趋势和异常值的方法,可以通过一些常用的图表来实现,如箱线图、直方图、散点图等。下面我们以Kaggle Titanic数据集为例,展示如何通过可视化进行数据探索。
箱线图:
箱线图可以用来展示数据的分布情况,包括四分位数、中位数以及异常值等信息。以Kaggle Titanic数据集中的年龄(age)为例,下面是一个箱线图:
import seaborn as sns
import matp