Python进大厂比赛中的特征工程与模型训练

本文详细介绍了Python在大厂比赛中的特征工程和模型训练,包括数据探索(可视化、统计分析)、特征处理(缺失值、异常值处理)、特征选择和特征生成,结合Kaggle Titanic数据集展示了具体实践。
摘要由CSDN通过智能技术生成

引言

在机器学习的实践中,特征工程和模型训练是非常重要的两个环节。特征工程决定了模型的性能上限,而模型训练则是如何优化模型来逼近上限。本文将从特征工程和模型训练两个方面,详细介绍Python进大厂比赛中的相关内容,并从实践中总结出一些应该注意的技巧和方法。

一、特征工程

特征工程是机器学习中极其重要的一环,决定了模型的性能上限。在Python进大厂比赛中,好的特征可以使得模型的得分大大提高。下面将从数据探索、特征处理、特征选择和特征生成四个方面介绍特征工程。

  1. 数据探索

在进行特征工程之前,我们需要对数据进行探索,以便更好地理解数据、发现异常值和缺失值等问题,并为后续的特征处理、特征选择和特征生成做好准备。数据探索的方法主要包括可视化和统计分析两种。

1.1 可视化

可视化是一种直观地展现数据分布、趋势和异常值的方法,可以通过一些常用的图表来实现,如箱线图、直方图、散点图等。下面我们以Kaggle Titanic数据集为例,展示如何通过可视化进行数据探索。

箱线图:

箱线图可以用来展示数据的分布情况,包括四分位数、中位数以及异常值等信息。以Kaggle Titanic数据集中的年龄(age)为例,下面是一个箱线图:

import seaborn as sns
import matp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrMylive.

穷呀,求求补助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值