【多传感器融合】匈牙利算法

本文介绍了匈牙利匹配算法在自动驾驶目标匹配中的应用,包括算法原理和实施步骤。通过目标中心位置、边界框比例和纵横比等特征,利用预测边界框的IoU计算好感度,并设定最小IoU阈值避免强制匹配。在目标创建和销毁过程中,引入延迟判断以提高目标融合稳定性。此外,还讨论了在多传感器数据融合中的目标配准策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

匈牙利匹配算法

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
匈牙利算法(Hungarian Algorithm)采用了二分图法的思想,具体来说,Hungarian Algorithm 是一个递归过程,尽可能找到让上一帧与当前帧目标一对一的匹配。该算法对红线连接的准确率要求很高,也就是对运动模型和表观模型要求较高,需要将置信度较高的对象匈牙利算法进行匹配,才能得到比较好的结果。
(1)初始化二分图 即将当前帧中可能与上一帧中目标匹配的检测框确认,如图 3-9(a);
(2)按照 ID 顺序依次进行匹配 首先将可能与上一帧目标 1 相匹配的当前帧的目标 1 进行匹配(红色代表已经匹配)。如图 3-9(b);
(3)对目标 2 进行匹配 如图 3-9(c);
(4)对目标 3 进行匹配 这时发现当前帧中可以与目标 3 进行匹配的目标 1,2 已经被匹配过了,为了使目标 3 可以匹配到目标,尝试将之前 U 中匹配到目标 1 的目标与另一个目标匹配(黄色代表取消匹配),如图 3-9(d),这时发现 U 中的目标 1 可以匹配到的 V 中的目标 2 也已经被 U 中的目标 2 匹配到了,那么同理,在将 U 中的目标 2 更换匹配目标,如图 3-9(e),这时再返回上一步,即可将 U 中的目标 1,2,3 均匹配到目标,如图 3-9(f);
(5)对目标 4 进行匹配 与上述步骤相同,但是最后并没有找到能够符合要求的匹配方法,所以 U 中的目标 4 在这一帧中消失,同时当前帧中的目标4 被视为新出现的目标。
在这里插入图片描述
在这里插入图片描述

bool find(int x){
	int j;
	for (j=1;j<=m;j++){   
		if (line[x][j]==true && used[j]==false){
			used[j]=1;
			if (girl[j]==0 || find(girl[j])){ 
				girl[j]=x;
				return true;
			}
		}
	}
	return false;
}
//下面是主程序

for (i=1;i<=n;i++)
{
	memset(used,0,sizeof(used));    //这个在每一步中清空
	if find(i) all+=1;
}
  1. 自动驾驶结合

    在自动驾驶中,不同传感器每一个周期返回不同的目标,相互之间如何匹配呢,对于同一个传感器而言,一般都有不同目标对应的ID,但是在夸传感器之间就没有这么幸运的事,另外融合了所有传感器的目标之后我们自己的输出,也需要目标和目标之间的配准,这中间都可以应用匈牙利匹配的方法实现。

    之前的文章中有介绍多目标的融合方法:传感器数据融合,当时只是把融合的方法进行分类,并没有介绍一种行之有效的操作手册,那这里我来阐述一下我的一个思路:

我们有一个目标模型:,其中 u 和 v 分别代表目标中心的水平和垂直像素位置,而 s 和 r 分别代表目标边界框的比例(面积)和纵横比,这里是和一个固定尺度进行比较,一般选最大的区间,使得归一化到统一的模型中。后面的是通过kalman滤波进行跟踪之后的结果。
采用匈牙利匹配对这些目标进行匹配,这中间不同目标之间的好感度,我们采用预测边界框之间的交并比(IoU)来计算,当然我们也不会一位的进行配对,需要设计最小交并比(IoU),也就是说交并比太小我们没有必要强行匹配。
文章发现边界框的 IoU 距离隐式处理由目标经过引起的短时遮挡。具体地说,当遮挡物盖过目标时,只检测到遮挡物。尽管隐藏目标离检测框中心更近,但 IoU 距离更倾向于具有相似比例的检测。这使得可以在不影响覆盖目标的情况下,通过检测对遮挡目标进行校正。
当目标进入和离开图像时,需要相应地创建或销毁唯一标识。对于创建跟踪程序,文中认为任何重叠小于 IoUmin 的检测都表示存在未跟踪的目标。使用速度设置为零的边界框信息初始化跟踪器。由于此时无法观测到速度,因此速度分量的协方差用较大的值初始化,反映出这种不确定性。此外,新的跟踪器将经历一个试用期,其中目标需要与检测相关联以积累足够的证据以防止误报的跟踪。
最后的最后,我们对于一个对象的建立和销毁,需要加入延时判断,这样才不会让我们的目标来回跳动,增加目标融合的稳定性。

参考文献
https://blog.csdn.net/zhouyy858/article/details/103830741
https://blog.csdn.net/dark_scope/article/details/8880547

### IntelliJ IDEA 中通义灵码 AI 功能介绍 IntelliJ IDEA 提供了一系列强大的工具来增强开发体验,其中包括与通义灵码 AI 相关的功能。这些功能可以帮助开发者更高效地编写代码并提高生产力。 #### 安装通义灵码插件 为了使用通义灵码的相关特性,在 IntelliJ IDEA 中需要先安装对应的插件: 1. 打开 **Settings/Preferences** 对话框 (Ctrl+Alt+S 或 Cmd+, on macOS)。 2. 导航到 `Plugins` 页面[^1]。 3. 在 Marketplace 中搜索 "通义灵码" 并点击安装按钮。 4. 完成安装后重启 IDE 使更改生效。 #### 配置通义灵码服务 成功安装插件之后,还需要配置通义灵码的服务连接信息以便正常使用其提供的各项能力: - 进入设置中的 `Tools | Qwen Coding Assistant` 菜单项[^2]。 - 填写 API Key 和其他必要的认证参数。 - 测试连接以确认配置无误。 #### 使用通义灵码辅助编程 一旦完成上述准备工作,就可以利用通义灵码来进行智能编码支持了。具体操作如下所示: ##### 自动补全代码片段 当输入部分语句时,IDE 将自动提示可能的后续逻辑,并允许一键插入完整的实现方案[^3]。 ```java // 输入 while 循环条件前半部分... while (!list.isEmpty()) { // 激活建议列表选择合适的循环体内容 } ``` ##### 解释现有代码含义 选中某段复杂的表达式或函数调用,右键菜单里会有选项可以请求通义灵码解析这段代码的作用以及优化意见。 ##### 生产测试案例 对于已有的业务逻辑模块,借助于通义灵码能够快速生成单元测试框架及初始断言集,减少手动构建的成本。 ```python def test_addition(): result = add(2, 3) assert result == 5, f"Expected 5 but got {result}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HIT_Vanni

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值