1.非实时滤波
这个函数接受三个参数:速度数组、数组大小和窗口大小。函数中首先创建一个临时数组来存储滤波后的速度。对于每个位置,计算它前后窗口大小范围内的速度值之和,并求平均值,存储到临时数组中。最后将临时数组中的值复制回原速度数组中,完成滤波操作。注意,这里的速度数组是一个double类型的数组。
void smooth_speed(double *speed, int size, int window_size) {
double* temp = (double*)malloc(size * sizeof(double)); // 用于存储滤波后的速度
int half_window_size = window_size / 2;
for (int i = 0; i < size; i++) {
double sum = 0;
int count = 0;
for (int j = -half_window_size; j <= half_window_size; j++) {
int idx = i + j;
if (idx >= 0 && idx < size) {
sum += speed[idx];
count++;
}
}
temp[i] = sum / count;
}
// 将滤波后的速度复制回原速度
for (int i = 0; i < size; i++) {
speed[i] = temp[i];
}
free(temp);
}
2.实时滤波
下面是一个实时平滑滤波函数,它接受两个参数:当前速度和历史速度数组。函数中通过给定的历史速度数组来计算平均速度,然后将当前速度加入数组最后一位,把历史速度数组中第一位去掉,再重新计算平均速度,从而实现实时的滤波输出:
double smooth_speed_realtime(double current_speed, double *history_speed, int size) {
double sum = 0;
for (int i = 0; i < size; i++) {
sum += history_speed[i];
}
double average_speed = sum / size;
for (int i = 0; i < size - 1; i++) {
history_speed[i] = history_speed[i + 1];
}
history_speed[size - 1] = current_speed;
sum = 0;
for (int i = 0; i < size; i++) {
sum += history_speed[i];
}
return sum / size;
}
这个函数首先计算历史速度数组的平均速度,然后将当前速度加入数组最后一位,把历史速度数组中第一位去掉,再重新计算平均速度,最后返回平均速度作为滤波输出。