大模型检索增强生成RAG原理介绍

本文介绍了如何创建一个易于理解和修改的大模型RAG框架,重点讲解了RAG原理、为何使用RAG以解决大模型的问题,以及技术路线,包括知识库构建、向量化、知识检索和知识问答。通过实例说明,降低了学习RAG技术的门槛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是程序锅。

github上的代码封装程度高,不利于小白学习入门。

常规的大模型RAG框架有langchain等,但是langchain等框架源码理解困难,debug源码上手难度大。

因此,我写了一个人人都能看懂、人人都能修改的大模型RAG框架代码。

整体项目结构如下图所示:

手把手教你大模型RAG框架架构

本篇文章将介绍2.RAG原理介绍,不需要编程,理解整体思路。

一、为什么要用RAG?

LLM会产生误导性的 “幻觉”,训练数据会过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为大模型时代的一大趋势。

RAG通过在语言模型生成答案之前,先从广泛的专业文档数据库中检索相关信息,然后利用这些专业信息来引导大模型生成的结果,极大地提升了内容的准确性和相关性。

RAG有效地缓解了幻觉问题,提高了知识更新的速度(大模型+搜索引擎),并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。

二、RAG的技术路线

RAG整体技术路线可分为3大块8个小点见图1,其中包含知识库构建、知识检索和知识问答。其中核心在于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值