点云数据集 资源汇总1

本文整理了几个重要的3D点云数据集,包括ModelNet40用于点云分类,ShapeNetPart针对点云分割,以及S3DIS用于室内场景的语义分割。这些数据集提供了丰富的三维模型和标注信息,适用于计算机视觉和图形学领域的研究。
摘要由CSDN通过智能技术生成

转载自:点云数据集-T_niubility三维点云开源数据集汇总-Pluto0054
整理汇总如下,仅供学习之用。

一、ModelNet40(点云分类)

普林斯顿ModelNet项目的目标是为计算机视觉、计算机图形学、机器人和认知科学领域的研究者们提供一个全面、干净的三维CAD模型集合, 该数据的主页地址https://modelnet.cs.princeton.edu, 数据最早发布在论文3D ShapeNets: A Deep Representation for Volumetric Shapes [CVPR 2015]上.
模型:没有颜色信息的飞机、杯子、椅子、吉他等40个模型。
在这里插入图片描述

相关工作人员从数据中选择了常见的40类和10类构成数组子集, 分别表示为ModelNet40和ModelNet10, 且两个数据集都有orientation aligned的版本。实验中数据用到比较多的是ModelNet40, 有如下三种数据形式:

数据集modelnet40_normal_resampled.zipmodelnet40_ply_hdf5_2048.zipModelNet40.zip
文件大小1.71G435M2.04G
内容point: x, y, z, normal_x, normal_y, normal_z;
shape: 10k points
point: x, y, z;
shape: 2048 points
off格式, 具体参考这里
训练集 / 测试集9843 / 24689840 / 24689844 / 2468
下载地址modelnet40_normal_resampled.zipmodelnet40_ply_hdf5_2048.zipModelNet40.zip

二、ShapeNet Part(点云分割)

ShapeNet数据集是一个有丰富标注的、大规模的3D图像数据集, 发布于ShapeNet: An Information-Rich 3D Model Repository [arXiv 2015], 它是普林斯顿大学、斯坦福大学和TTIC研究人员共同努力的结果, 官方主页为shapenet.org.ShapeNet包括ShapeNetCore和ShapeNetSem子数据集.

网址: http://web.stanford.edu/~ericyi/project_page/part_annotation/index.html
模型:没有颜色信息,有法线信息的,带有标注的飞机、杯子、帽子等16个类别的模型。
在这里插入图片描述

ShapeNet Part是从ShapeNetCore数据集选择了16类并进行语义信息标注的数据集, 用于点云的语义分割任务, 其数据集发表于A Scalable Active Framework for Region Annotation in 3D Shape Collections [SIGGRAPH Asia 2016], 官方主页为 ShapeNet Part. 数据包含几个不同的版本, 其下载链接分别为shapenetcore_partanno_v0.zip (1.08G)和shapenetcore_partanno_segmentation_benchmark_v0.zip(635M). 下面就第2个数据集segmentation benchmark进行介绍:

从下面表格可以看出, ShapeNet Part总共有16类, 50个parts,总共包括16846个样本。该数据集中样本呈现出不均衡特性,比如Table包括5263个, 而Earphone只有69个。每个样本包含2000多个点, 属于小数据集。该数据集中训练集12137个, 验证集1870个, 测试集2874个, 总计16881个。[注意, 这里和下面表格统计的(16846)并不一样, 后来发现是训练集、验证集和测试集有35个重复的样本]

类别nparts/shapensamples平均npoints/shape
Airplane426902577
Bag2762749
Cap2552631
Car48982763
Chair437462705
Earphone3692496
Guitar37872353
Knife23922156
Lamp415462198
Laptop24452757
Motorbike62022735
Mug21842816
Pistol32752654
Rocket3662358
Skateboard31522529
Table352632722
Total50168462616

三、S3DIS Dataset (语义分割)

S3DIS是3D室内场景的数据集, 主要用于点云的语义分割任务。主页http://buildingparser.stanford.edu/dataset.html. (但官方主页我暂时访问不了了, 关于数据集背景的介绍性说明就不写了). 关于S3DIS的论文是Joint 2D-3D-Semantic Data for Indoor Scene Understanding [arXiv 2017]和3D Semantic Parsing of Large-Scale Indoor Spaces [CVPR 2016]. S3DIS从3个building的6个Area采集得到, Area1, Area3, Area6属于buidling 1, Area2和Area4属于building 2, Area5属于building 3. 常用的数据下载格式包括如下三种:

其中Stanford3dDataset_v1.2_Aligned_Version.zipStanford3dDataset_v1.2.zip都是完整场景的数据集, 每个点对应6个维度(x, y, z, r, g, b), 而indoor3d_sem_seg_hdf5_data.zip是对原始数据场景的切割,把大场景切割成1m x 1m的block: 完整数据集被切割成了23585个block, 每个block是4096个点, 每个点对应9个维度: 除了x, y, z, r, g, b信息外,剩余的3维是相对于所在大场景的位置(归一化坐标).

在这里插入图片描述

下面是由Stanford3dDataset_v1.2.zip数据统计得到的关于S3DIS的信息, 可能和论文中一些结果不太一致。S3DIS数据集由以上6个Area采集得到, 共包含272个场景, 可分为11种不同的场景(括号内为场景数量, 场景大小(点的数量)): office(156, 87w), conference room(11, 142w), hallway(61, 122w), auditorium(2, 817w), open
space(1, 197w), lobby(3, 242w), lounge(3, 146w), pantry(3, 58w), copy room(2, 52w), storage(19, 35w) and WC(11, 70w). 根据语义信息, 上述场景被分成14个类别, 如下表所示. 可以看到不同的类别也是不均衡的, 比如wall有1547个, 但sofa只有55个.

Totalcolumnclutterchairwindowbeamfloorwallceilingdoorbookcaseboardtablesofastairs
98332543882136316815928415473855435841374555517

四、 室内场景NYU Depth Dataset V2
网址:https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
在这里插入图片描述

五、 城市场景的三维重建和语义网格标记

网址:http://www.vision.ee.ethz.ch/~rhayko/paper/eccv2014_riemenschneider_multiviewsemseg/
模型:建筑物
在这里插入图片描述


六、 标注过 3D 室内场景重构信息的大规模 RGB-D 数据集

   网址:http://www.scan-net.org/
1、 网格数据(.ply)
2、 RGB-D传感器留流数据(.sens)
3、 2D标注数据
在这里插入图片描述

   七、 室内场景和小物体数据库

  网址:http://rgbd-dataset.cs.washington.edu/
在这里插入图片描述
缺点:只有一个视点片面的点,反面没有点。
在这里插入图片描述
   八、 室内场景

  网址: https://github.com/alexsax/2D-3D-Semantics
在这里插入图片描述

Datasets(更多资源 -> 这里)

附、3DMatch数据集(关键点、特征描述子、点云配准等)

请查看https://github.com/zhulf0804/3D-PointCloud/tree/master/3DMatch

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值