SIGIR 2021 | 推荐系统中的多行为建模

MB-GMN是一种结合元学习和图神经网络的推荐系统模型,旨在处理用户与商品的多行为交互数据。通过多行为模式编码、元图神经网络和元学习迁移网络,MB-GMN提取和融合不同行为的用户与商品的表征信息,提升了推荐的准确性。实验证明,MB-GMN在多个多行为推荐数据集上表现出优越的性能。
摘要由CSDN通过智能技术生成

549a392493f3d0582d16548787bf2f73.gif

©原创 · 作者 | 黄超、夏良昊

单位 | 香港大学计算机学院

研究方向 | 数据挖掘, 信息检索

3186092a631c7d7c850d82e348d48994.png

研究背景

个性化推荐系统(Recommender Systems)作为解决信息过载的有效技术,已经被广泛运用于各类线上应用系统,比如电子商务以及在线视频平台。在当前的推荐系统技术中,协同过滤逐渐演变成为非常重要的模型框架用于通过用户历史的交互行为学习复杂的用户兴趣爱好。其中基于深度学习框架的推荐算法通过有效地学习用户和商品的表征信息,已经为大量的实际推荐平台强劲助力。

近年来,基于图神经网络的深度学习模型的引入给协同推荐方法带来了明显的效果提升。但是,现有的方法大多只针对单类别的用户与商品的交互关系(如点击、购买)进行建模,而忽略了推荐场景中用户多行为的特性。例如,在一个典型的电商平台上,同一个用户和商品的交互关系可能会是多重类别的,其中包括浏览、加购物车、收藏、购买等多种交互关系,不同交互行为赋予了用户和商品之前关联性不同的语义信息,从而可以使得对用户。

fcd5dfa289a70ccb5a3eec9907df2a53.png

在该研究工作中,我们通过对用户复杂的多行为模式进行探索有效地提升推荐效果。然而,运用多行为交互数据来刻画用户复杂的兴趣面临着诸多挑战。首先,用户与商品间的多重交互关系具有行为异构特性,每种行为各自包含不同的语义。例如,不同行为一般反映出不同的用户偏好程度,点击通常只意味着用户对商品具有初步且较为模糊的兴趣,而购买则代表着用户较强的偏好。

同时,行为类别间存在复杂的关联性,使得多行为交互数据的建模变得更加复杂。例如,在电商平台中,添加购物车和收藏对很多用户来说是相近的交互选项,两者具有互补关系;添加购物车往往意味着用户即将购买。

更具挑战的是,对不同用户来说,上述行为异构性常常有所差别,例如有的用户倾向于浏览商品后直接决定是否购买,而有的用户习惯将候选商品添加购物车后统一购买。因此,如果对用户多行为交互模型进行有效地个性化建模,将是该工作所面临的重要挑战。

e5f80f5a3c0ea8536088f175d791d03b.png

论文标题:

Graph Meta Network for Multi-Behavior Recommendation

论文作者:

夏良昊 (华南理工大学),许勇 (华南理工大学),黄超 (香港大学),戴鹏 (京东硅谷研发中心),薄列峰 (京东硅谷研发中心)

论文来源:

SIGIR 2021

论文链接:

https://dl.acm.org/doi/pdf/10.1145/3404835.3462972

代码链接:

https://github.com/akaxlh/MB-GMN

abab3f7ef128677f7d7c112d4afb28fe.png

模型介绍

为了应对上述挑战,从复杂的多行为关系中提炼出用户和商品有效的表征ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值