python创建一个特征选择分类器

该博客介绍了如何在Python中进行特征选择和构建分类器的过程。首先,它强调了导入必要的库,如pandas、numpy和sklearn。然后,讨论了基础模型的建立,这可能是构建分类器的基础。接着,作者展示了如何创建一个模型选择分类器的pipeline,这种技术能有效整合特征选择和分类步骤,提高模型的效率和准确性。
摘要由CSDN通过智能技术生成
导入相应的模块
from sklearn import datasets

iris = datasets.load_iris()
X, y = iris.data[:, :], iris.target

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import EnsembleVoteClassifier
from sklearn.pipeline import Pipeline
from mlxtend.feature
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值