作者丨歪杠小胀@知乎(已授权)
来源丨https://zhuanlan.zhihu.com/p/451441329
编辑丨极市平台
导读
如果只有一个loss,那么直接loss.backward()即可,但是不止一个loss时,就不知道将backward()放在哪里了。本文作者总结了一些自己在遇到该问题时的解决方式,希望能和大家一起讨论交流~
记录写这篇文章的初衷
最近在复现一篇论文的训练代码时,发现原论文中的总loss
由多个loss
组成。如果只有一个loss
,那么直接loss.backward()
即可,但是这里不止一个。一开始看到不止一个loss
时,不知道将backward()
放在哪里。
for j in range(len(output)):
loss += criterion(output[j], target_var)
我们知道,一般传统的梯度回传步骤是这样的:
outputs = model(images)
loss = criterion(outputs,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
首先模型会通过输入的图像与标签计算相应的损失函数;
然后清除之前过往的梯度
optimizer.zero_grad()
;进行梯度的回传,并计算当前的梯度
loss.backward()
反向传播,计算当前梯度;根据当前的梯度来更新网络参数。一般来说是进来一个
batch
的数据就会计算一次梯度,然后更新网络optimizer.step()
而现在我需要在一个for
循环中计算loss
,于是我就在想是否需要在for
循环中进行backward()
的计算呢?
for j in range(len(output)):
loss += criterion(output[j], target_var)
loss.backward()
但是当计算完一个loss之后就使用backward方法,发现报错:Pytorch - RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.
原因是在Pytorch
中,一张计算图只允许存在一次损失的回传计算,当每次进行梯度回传之后,中间的变量都会被释放掉。所以如果想在本次batch
中再次计算图的梯度时,程序会发现中间的计算图已经没了,那么自然而然也就没有办法计算梯度。
网上看到有个解决办法是在backward
中加入retain_grad=True
,也就是backward(retain_graph=True)
。
这句话的意思是暂时不释放计算图,所以在后续的训练过程中计算图不会被释放掉,而是会一直累积,但是随着训练的进行,会出现OOM
。因此,需要在最后一个loss
计算时,把(retain_graph=True)
去掉,也就是只使用backward()
,也就是除了最终的loss
要释放资源、计算梯度,前面若干个的loss
都不进行此步骤。
for j in range(len(output)):
loss += criterion(output[j], target_var)
loss.backward()
也许有同学会问,为什么不这么写呢?我之前也是这样的,可是发现loss
并没有降低,于是就开始从loss
里找原因了,但是为什么不降低,我也没有理解明白,希望有明白的同学可以交流下~
其实当遇到这种情况,最好的办法就是分开写,然后再汇总到一个总loss
中计算backward
计算。如:
loss1= Loss(output[0], target)
loss2= Loss(output[1], target)
loss3= Loss(output[2], target)
loss4= Loss(output[3], target)
loss = loss1 + loss2 + loss3 + loss4
loss.backward()
当我这么写的时候,loss
就正常下降了。看到loss
下降得还算是正常时,我就稍微放心了。
发生错误的其他可能原因
在查询资料的时候,发现即使只计算一个loss
,也可能会出现错误。
有可能你计算的设备一个在
cpu
上,一个在gpu
,所以将设备设置为同一个即可。也有可能在多次循环中,有一些输入是不需要计算梯度的,这个时候就可以将输入的
require_grad
设置为False
。关于张量
tensor
中的require_grad
属性:如果一个张量它的requires_grad=True
,那么在反向传播计算梯度时调用backward()
方法就会计算这个张量的梯度。但是需要注意的是:计算完梯度之后,这个梯度并不一定会一直保存在属性grad
中,只有对于requires_grad=True
的叶子结点才会一直保存梯度,即将梯度一直保存在该叶子张量的grad
属性中。而对于非叶子节点,即中间节点的张量,我们在计算完梯度之后为了更高效地利用内存,一般会将中间计算的梯度释放掉。在使用
LSTM
、GRU
这一些网络时,我想是因为它们不仅会从前往后计算梯度,也会从后往前计算梯度,所以可以看做是梯度在两个方向上进行传播,那么这个过程中就会有重叠的部分。因此可能就需要使用detach
来进行截断。在源码中,detach
的注释是:Returns a new Variable, detached from the current graph。是将某个结点变成不需要梯度的变量,将其从当前的计算图剥离出来。因此当反向传播经过这个结点时,梯度就不会从这个结点往前面传播。
detach()
与detach_()
pytorch
中有两个函数detach()
、detach_()
,它们两个名字、功能都很像,都是用于切断梯度的反向传播。那么什么时候会用到呢?
当我们在训练网络的时候可能希望保持一部分的网络参数不变,而只对网络的一部分参数进行调整;或者只训练网络的部分分支网络,并且不想让其梯度对主网络的梯度造成影响。这时候我们就可以使用这两个函数来进行截断梯度的反向传播。
二者的区别就是detach_()
是对本身进行更改,而detach()
则是生成了一个新的tensor
。
使用detach()
会返回一个新的Variable
。虽然它是从当前计算图中分离下来的,但是仍指向原变量的存放位置,也就是共享同一个内存区域。使用了detach
后,它的requires_grad
属性为False
,也就是不需要再计算它的梯度。即使之后重新将它的requires_grad
变为True
,它也不会具有梯度grad
。这样我们就会继续使用这个新的变量进行计算,后面当我们进行反向传播时,梯度会一直计算直到到达这个调用了detach()
的结点,到达这个结点后就会停止,不会再继续向前进行传播。
但是返回的变量和原始的结点是共用同一个内存区域,所以如果使用了detach
后,又对其进行修改,那么进行调用backward()
时,就可能会导致错误。
使用tensor.detach_()
则会将一个tensor
从创建它的图中分离,并把它设置成叶子结点。举个例子:
假设一开始的变量关系为:x
->m
-> y
,那么这里的叶子结点就是x
,当这个时候对m
进行了m.detach_()
操作,首先会取消m
与前一个结点x
的关联,并且grad_fn
为None
。此时,这里的关系就会变成x
,m
->y
,这个时候m
就变成了叶子结点。然后再将m
的requires_grad
属性设置为False
,当我们对y
进行backward()
时就不会求m
的梯度。
如何编写更能节省内存的backward
说到梯度回传,我在网上也看到有人的写法是这样的,目的是为了节省内存:
for i, (images, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs, target)
loss = loss / accumulation_steps
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
首先进行正向传播,将数据传入网络进行推理,得到结果
将预测结果与
label
输入进损失函数中计算损失进行反向传播,计算梯度
重复前面的步骤,先不清空梯度,而是先将梯度进行累加,当梯度累加达到固定次数之后就更新网络参数,然后将梯度置零
梯度累加就是每次获取1个batch
的数据,计算1次梯度,但是先不进行清零,而是做梯度的累加,不断地进行累加,当累加到一定的次数之后,再更新网络参数,然后将梯度清零,进行下一个循环。
通过这种参数延迟更新的手段,可以实现与采用大batch size
相近的效果。在平时的实验过程中,我一般会采用梯度累加技术,大多数情况下,采用梯度累加训练的模型效果,要比采用小batch size训练的模型效果要好很多。
一定条件下,batch size
越大训练效果越好,梯度累加则实现了batch size
的变相扩大,如果accumulation_steps
为8,则batch size
就变相扩大了8倍,使用时需要注意,学习率也要适当放大:因为使用的样本增多,梯度更加稳定了。
有人会问,在上面的代码中为什么不直接对多个batch
的loss
先求和然后再取平均、再进行梯度回传和更新呢?
按我的理解这是为了减小内存的消耗。当采用多个batch
的loss
求和平再均后再回传的方式时,我们会进行accumulation_steps
次batch
的前向计算,而前向计算后都会生成一个计算图。也就是说,在这种方式下,会生成accumulation_steps
个计算图再进行backward
计算。
而采用上述代码的方式时,当每次的batch
前向计算结束后,就会进行backward
的计算,计算结束后也就释放了计算图。又因为这两者计算过程的梯度都是累加的,所以计算结果都是相同的,但是上述的方法在每一时刻中,最多只会生成一张计算图,所以也就减小了计算中的内存消耗。
结语
其实通过这次探讨,只能说是了解地稍微深一些了,但是其中的原理还是不太明白。比如autograd
的跟踪、in-place operations
的属性,什么时候requires_grad
为True
,什么时候又为False
,什么时候梯度会进行覆盖等等,这一些还是一头雾水。特别是上面那种写法,搞不明白loss
为什么就突然下降了,所以还是得多学多用才能记住,才能深刻理解。
我也看到很多文章提到:其实大部分的写法都十分高效了,所以除非处于非常沉重的内存压力下,否则一般不会用到太多骚操作。
本文仅做学术分享,如有侵权,请联系删文。
干货下载与学习
后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件
后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf
后台回复:3D视觉课程,即可学习3D视觉领域精品课程
计算机视觉工坊精品课程官网:3dcver.com
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
重磅!计算机视觉工坊-学习交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~