相机参数标定

目录

一、坐标系变换

1. 世界坐标系与相机坐标系的变换关系

2. 相机坐标系与图像坐标系的变换关系

3. 图像坐标系与像素坐标系的变换关系

4. 从世界坐标系到像素坐标系的总体变换

二、参数标定

1. 封闭解

1.1 标定综合参数 

1.2 标定内部参数

1.3 标定外部参数

1.4 径向畸变参数及校正


理论根据: 本文是基于张正友博士的论文理论而来,论文地址--提取码:ch6m


一、坐标系变换

1. 世界坐标系与相机坐标系的变换关系

如图:

       如图所示建立坐标系统,其中照相机坐标系Oxyz的原点也是照相机的光心,OO_{1}为焦距 f(像距)。

从世界坐标系转换为相机坐标系的变换为:

                                                          \begin{pmatrix} x\\ y\\ z \end{pmatrix}=R\begin{pmatrix} X_{w}\\ Y_{w}\\ Z_{w} \end{pmatrix}+T=\begin{pmatrix} r_{1} & r_{2} & r_{3} \\ r_{4} & r_{5} & r_{6} \\ r_{7} & r_{8} & r_{9} \end{pmatrix} * \begin{pmatrix} X_{w}\\ Y_{w}\\ Z_{w} \end{pmatrix} + \begin{pmatrix} t_{x}\\ t_{y}\\ t_{z} \end{pmatrix} (1)

其中

                                                        R=\begin{pmatrix} r_{1} & r_{2} & r_{3} \\ r_{4} & r_{5} & r_{6} \\ r_{7} & r_{8} & r_{9} \end{pmatrix}

R为从世界坐标系到相机坐标系的旋转矩阵,

                                                       T=\begin{pmatrix} t_{x}\\ t_{y}\\ t_{z} \end{pmatrix}

T为世界坐标原点到相机坐标原点的平移矩阵

将(1)式写成齐次坐标形式:

                                                     \begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix}=\begin{bmatrix} R & T \\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}=M\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}

其逆变换为:

                                                    \begin{pmatrix} X_{w}\\ Y_{w}\\ Z_{w} \end{pmatrix}=R^{-1}\begin{pmatrix} x\\ y\\ z \end{pmatrix}-R^{-1}\begin{pmatrix} t_{x}\\ t_{y}\\ t_{z} \end{pmatrix}(2)

写为齐次形式:

                                                   \begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix} = \begin{bmatrix} R^{-1} & -R^{-1}T \\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix}

2. 相机坐标系与图像坐标系的变换关系

      考虑图中照相机坐标的任意一点P(x,y,z),根据中心投影几何关系,有如下比例关系:

                                                    \left\{\begin{matrix} X=fx/z\\ Y=fy/z \end{matrix}\right.

写为齐次坐标形式:

                                                    s\begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}=\begin{bmatrix} f&0&0&0\\ 0&f&0&0\\ 0&0&1&0 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\1 \end{bmatrix}

其中比例因子s=z

逆变换关系为:

                                                   \left\{\begin{matrix} x=zX/f\\ y=zY/f \end{matrix}\right.

齐次坐标:

                                                   \begin{bmatrix} x\\ y\\ z \end{bmatrix}=s\begin{bmatrix} f^{-1}&0&0\\ 0&f^{-1}&0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}

3. 图像坐标系与像素坐标系的变换关系

如图:

zuobiao

        假设相机像素坐标为\left ( u,v \right ),单位是像素,照相机光轴与像面的交点坐标为\left ( u_{0},v_{0} \right ),一般在像面中心附近。以\left ( u_{0},v_{0} \right )为坐标原点O_{1}建立新坐标系O_{1}XY,并且设像素单位为dXdY,则像素坐标系与图像坐标系之间的变换关系为:

                                                                        \left\{\begin{matrix} u=X/dX+u_{0}\\ v=Y/dY+v_{0} \end{matrix}\right.

写作齐次坐标形式:

                                                                         \begin{bmatrix} u\\ v\\ 1 \end{bmatrix}=\begin{bmatrix} dX^{-1}&0&u_{0}\\0&dY^{-1}&v_{0} \\0&0&1 \end{bmatrix}\begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}

逆关系:

                                                                        \begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}=\begin{bmatrix} dX&0&-u_{0}dX\\0&dY&-v_{0}dY \\0&0&1 \end{bmatrix}\begin{bmatrix} u\\ v\\ 1 \end{bmatrix}

4. 从世界坐标系到像素坐标系的总体变换

 s\begin{bmatrix} u\\ v\\ 1 \end{bmatrix}=\begin{bmatrix} dX^{-1}&0&u_{0}\\0&dY^{-1}&v_{0} \\0&0&1 \end{bmatrix}\begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}=\begin{bmatrix} dX^{-1}&0&u_{0}\\0&dY^{-1}&v_{0} \\0&0&1 \end{bmatrix}\begin{bmatrix} f&0&0&0\\0&f&0&0 \\0&0&1&0 \end{bmatrix}\begin{bmatrix} x\\ y\\z\\ 1 \end{bmatrix}

                =\begin{bmatrix} dX^{-1}&0&u_{0}\\0&dY^{-1}&v_{0} \\0&0&1 \end{bmatrix}\begin{bmatrix} f&0&0&0\\0&f&0&0 \\0&0&1&0 \end{bmatrix}\begin{bmatrix} R & T \\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}

               =\begin{bmatrix} dX^{-1}f&0&u_0&0\\0&dY^{-1}f&v_0&0 \\0&0&1&0 \end{bmatrix}\begin{bmatrix} R & T \\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}=\begin{bmatrix} \alpha _{x}&0&u_0&0\\0& \alpha_{y}&v_0&0 \\0&0&1&0 \end{bmatrix}\begin{bmatrix} R & T \\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}

               =AM\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}

其中,\alpha_{x}=dX^{-1}f,\alpha_{y}=dY^{-1}f为两个轴上的尺度因子(或者称为归一化焦距)。

且,                                 M=\begin{bmatrix} R & T \\ 0^{T} & 1 \end{bmatrix}

为相机外部参数。

                                      A=\begin{bmatrix} \alpha _{x}&0&u_0&0\\0& \alpha_{y}&v_0&0 \\0&0&1&0 \end{bmatrix}

为相机内部参数。

考虑到照相机的的不垂直度(描述两个坐标轴的倾斜角),照相机内部参数矩阵写作:

                                    A=\begin{bmatrix} \alpha _{x}&\gamma &u_0&0\\0& \alpha_{y}&v_0&0 \\0&0&1&0 \end{bmatrix}

其中\gamma为两个轴的不垂直度因子。

二、参数标定

1. 封闭解

1.1 标定综合参数 H

由式:

         s\begin{bmatrix} u\\ v\\ 1 \end{bmatrix}=AM\begin{bmatrix} X_{w}\\ Y_{w}\\ Z_{w}\\ 1 \end{bmatrix}

对于两维标定模板,可以规定Z_{w}\equiv 0,则

         s\begin{bmatrix} u\\ v\\ 1 \end{bmatrix}=A\begin{bmatrix}r_{1}&r_{2}& r_{3}&T\end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ 0\\ 1 \end{bmatrix}

简化为:

        s\begin{bmatrix} u\\ v\\ 1 \end{bmatrix}=A\begin{bmatrix}r_{1}&r_{2}& T\end{bmatrix}\begin{bmatrix} X_{w}\\ Y_{w}\\ 1 \end{bmatrix}

假设

         H\equiv \begin{bmatrix} h_{1}& h_{2} &h_{3} \end{bmatrix}=\lambda A \begin{bmatrix} r_{1}& r_{2} & T \end{bmatrix}

使得

         \begin{bmatrix} u\\ v\\ 1 \end{bmatrix} = H\begin{bmatrix} X_{w}\\ Y_{w}\\ 1 \end{bmatrix}

注意这里的\lambdas的关系。

使用最小二乘法计算H,即使得根据上式计算得到图像坐标\tilde{m}与实际图像坐标m之间的残差最小,目标函数为:

        J=\sum_{i}^{n}\left \| m_{i} - \tilde{m_{i}}\right \|^{2}

下面计算H的初始化过程:

对于第i对对应点有

        \begin{bmatrix} u_{i}\\ v_{i}\\ 1 \end{bmatrix}= \begin{bmatrix} h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33} \end{bmatrix}\begin{bmatrix} X_{i}\\ Y_{i}\\ 1 \end{bmatrix}

两边叉乘\begin{bmatrix} u_{i}\\ v_{i}\\ 1 \end{bmatrix}得到

        \begin{bmatrix} h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33} \end{bmatrix}\begin{bmatrix} X_{i}\\ Y_{i}\\ 1 \end{bmatrix}\times \begin{bmatrix} u_{i}\\ v_{i}\\ 1 \end{bmatrix}= 0

化为三个分量方程

        \left ( h_{12}X_{i}+h_{22}Y_{i}+h_{32} \right )-\left ( h_{13}X_{i}+h_{23}Y_{i}+h_{33} \right )v_{i}=0

        \left ( h_{13}X_{i}+h_{23}Y_{i}+h_{33} \right )u_{i}-\left ( h_{11}X_{i}+h_{21}Y_{i}+h_{31} \right )=0

        \left ( h_{11}X_{i}+h_{21}Y_{i}+h_{31} \right )v_{i}-\left ( h_{12}X_{i}+h_{22}Y_{i}+h_{32} \right )u_{i}=0

这是一个关于9个未知数\begin{bmatrix} h_{11} & h_{21} & h_{31} & h_{12} & h_{22} & h_{32} & h_{13} & h_{23} & h_{33} \end{bmatrix}^{T}齐次方程组,

系数矩阵为

        \begin{bmatrix} 0 & 0 & 0 & X_{i} & Y_{i} & 1 & -X_{i}v_{i} & -Y{i}v_{i} & -v_{i}\\ -X_{i} & -Y_{i} & -1 & 0 & 0 & 0 & X_{i}u_{i} & Y_{i}u_{i} & u_{i}\\ X_{i}v_{i} & Y_{i}v_{i} & v_{i} & -X_{i}u_{i} & -Y_{i}u_{i} & -u_{i} & 0 & 0 & 0 \end{bmatrix}

对于n个点对,可以得到3n\times 9的系数矩阵,该系数矩阵可以通过奇异值分解得到H

1.2 标定内部参数

        H\equiv \begin{bmatrix} h_{1} & h_{2} & h_{3} \end{bmatrix}=\lambda A\begin{bmatrix} r_{1} & r_{2} & T \end{bmatrix}

r_{1}\cdot r_{2}=0r_{1}^{2}=r_{2}^{2}=1可得

        h_{1}^{T}A^{-T}A^{-1}h_{2}=0

        h_{1}^{T}A^{-T}A^{-1}h_{1}=h_{2}^{T}A^{-T}A^{-1}h_{2}

       B= A^{-T}A^{-1}=\begin{bmatrix} B_{11} & B_{12} & B_{13}\\ B_{21} & B_{22} & B_{23}\\ B_{31} & B_{32} & B_{33} \end{bmatrix}

将两个方程写成分量形式

      h_{11}H_{21}B_{11}+(h_{11}h_{22}+h_{12}h_{21})B_{12}+(h_{11}h_{23}+h_{21}h_{13})B_{13}+h_{12}h_{22}B_{22}+(h_{13}h_{22}+h_{12}h_{23})B_{23}+h_{13}h_{23}B_{33}=0

           (h_{11}^{2}-h_{21}^{2})B_{11}+(h_{12}^{2}-h_{22}^{2})B_{22}+(h_{13}^{2}-h_{23}^{2})B_{33}+2(h_{11}h_{12}-h_{21}h_{22})B_{12}+2(h_{11}h_{13}-h_{21}h_{23})B_{13}+2(h_{12}h_{13}-h_{22}h_{23})B_{23}=0

将方程合并

        \begin{bmatrix} h_{11}h_{21} & h_{11}h_{22}+h_{12}h_{21} & h_{12}h_{22} & h_{11}h_{23}+h_{21}h_{13} & h_{13}h_{22}+h_{12}h_{23} & h_{13}h_{23}\\ h_{11}^{2}-h_{21}^{2} & 2(h_{11}h_{12}-h_{21}h_{22}) & h_{12}^{2}-h_{22}^{2} & 2(h_{11}h_{13}-h_{21}h_{23}) & 2(h_{12}h_{13}-h_{21}h_{23}) & h_{13}^{2}-h_{23}^{2} \end{bmatrix}\begin{bmatrix} B_{11}\\ B_{12}\\ B_{22}\\ B_{13}\\ B_{23}\\ B_{33} \end{bmatrix}=0

进一步解得内部参数为

        v_{0}=\frac{B_{12}b_{13}-B_{11}B_{23}}{B_{11}B_{22}-B_{12}^{2}}

        \tau =B_{33}-\frac{B_{13}^{2}+v_{0}(B_{12}B_{13}-B_{11}B_{23})}{B_{11}}

        \alpha =\sqrt{\frac{\tau }{B_{11}}}

        \beta =\sqrt{\frac{\tau B_{11}}{B_{11}B_{22}-B_{12}^2}}

        \gamma =-\frac{B_{12}\alpha ^{2}\beta }{\tau }

        u_{0}=\frac{\gamma v_{0}}{\alpha }-\frac{B_{13}\alpha ^{2}}{\tau }

1.3 标定外部参数

进一步解得外部参数为

        r_{1}=sA^{-1}h_{1}

        r_{2}=sA^{-1}h_{2}

        r_{3}=r_{1}\times r_{2}

        T=sA^{-1}h_{3}

注意这里的

        s=\frac{1}{\left \| A^{-1}h_{1} \right \|}=\frac{1}{\left \| A^{-1}h_{2} \right \|}

注意这里\lambdas的关系。

转换为

        R=(r_{1} r_{2} r_{3})

1.4 径向畸变参数及校正

       \begin{pmatrix} x\\ y\\ T \end{pmatrix}=\begin{pmatrix} r_{1} & r_{2} & T \end{pmatrix}\begin{pmatrix} X_{w}\\ Y_{w}\\ 1 \end{pmatrix}

       \begin{pmatrix} u\\ v\\ 1 \end{pmatrix}=\frac{1}{s}A\begin{pmatrix} x\\ y\\ T \end{pmatrix}

        \left\{\begin{matrix} \check{x}=x+x[k_{1}(x^{2}+y^{2})+k_{2}(x^{2}+y^{2})^{2}]\\ \check{y}=y+y[k_{1}(x^{2}+y^{2})+k_{2}(x^{2}+y^{2})^{2}]\end{matrix}\right.

从而

       \left\{\begin{matrix} \check{u}=u+(u+u_{0})[k_{1}(x^{2}+y^{2})+k_{2}(x^{2}+y^{2})^{2}]\\ \check{v}=v+(v+v_{0})[k_{1}(x^{2}+y^{2})+k_{2}(x^{2}+y^{2})^{2}]\end{matrix}\right.

建立如下方程组

       \begin{bmatrix} (u-u_{0})(x^{2}+y^{2}) & (u-u_{0}(x^{2}+y^{2})^{2})\\ (v-v_{0})(x^{2}+y^{2}) & (v-v_{0}(x^{2}+y^{2})^{2}) \end{bmatrix}\begin{bmatrix} k_{1}\\ k_{2} \end{bmatrix}=\begin{bmatrix} \check{u}-u\\ \check{v}-v \end{bmatrix}

其中\begin{pmatrix} u\\ v\\ 1 \end{pmatrix}为从世界坐标计算得到的理想像素坐标,\begin{pmatrix} \check{u}\\ \check{v}\\ 1 \end{pmatrix}为从图像处理得到的真实像素坐标。

解得径向畸变系数

       \begin{bmatrix} k_{1}\\ k_{2} \end{bmatrix}

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值