数学分析习题解答(四:第一部分)

素数的倒数和, B a s e l Basel Basel问题的 E u l e r Euler Euler证明

习题 A A A:连续函数的定义和基本性质

A 1 ) A1) A1) (函数极限的 Cauchy \text{Cauchy} Cauchy判别准则)给定 f : ( a , x 0 ) ∪ ( x 0 , b ) → R f:(a,x_0)\cup(x_0,b)\rightarrow\R f:(a,x0)(x0,b)R。那么, f f f x 0 x_0 x0处有极限当且仅当对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,使得对任意的 x 1 , x 2 ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) x_1,x_2\in(x_0-\delta,x_0)\cup(x_0,x_0+\delta) x1,x2(x0δ,x0)(x0,x0+δ),都有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε |f(x_1)-f(x_2)|<\varepsilon f(x1)f(x2)<ε

A 2 ) A2) A2) 假设 I I I是一个非空的区间并且 I I I不是一个点,证明, I I I上的连续函数 C ( I ) C(I) C(I)所构成的 R − \R- R线性空间是无限维的。

证明:设 I = [ a , b ] I=[a,b] I=[a,b](如果 I I I是开区间,我们就在其中取一个闭区间),用反证法,设 dim ⁡ C ( I ) = n ∈ Z > 0 \dim C(I)=n\in\Z_{>0} dimC(I)=nZ>0,我们将区间 [ a , b ] [a,b] [a,b]分成相同长度的 n + 1 n+1 n+1份,即从左至右第 i i i个区间为 I i I_i Ii,我们取一系列连续函数 f 1 , ⋯   , f n + 1 f_1,\cdots,f_{n+1} f1,,fn+1使得对任意的 i = 1 , ⋯   , n + 1 i=1,\cdots,n+1 i=1,,n+1,都有 f i ∣ ( I − I i ) = 0 , f i ∣ I i ≠ 0 f_i|_{(I-I_i)}=0,f_i|_{I_i}\neq0 fi(IIi)=0,fiIi=0,这里 0 0 0是连续函数 0 : I → R , x ↦ 0 0:I\rightarrow\R,x\mapsto0 0:IR,x0。这样的连续函数显然是存在的。

现在,我们通过证明 f 1 , ⋯   , f n + 1 f_1,\cdots,f_{n+1} f1,,fn+1线性无关来推出矛盾,这是因为 n n n维线性空间中线性无关向量组的长度不会超过 n n n。设 c 1 f 1 + ⋯ + c n + 1 f n + 1 = 0 c_1f_1+\cdots+c_{n+1}f_{n+1}=0 c1f1++cn+1fn+1=0。注意到存在 x i ∈ I i x_i\in I_i xiIi,使得 f i ( x i ) ≠ 0 f_i(x_i)\neq0 fi(xi)=0,而 ( c 1 f 1 + ⋯ + c n + 1 f n + 1 ) ( x i ) = c i f i ( x i ) = 0 ( x i ) = 0 (c_1f_1+\cdots+c_{n+1}f_{n+1})(x_i)=c_if_i(x_i)=0(x_i)=0 (c1f1++cn+1fn+1)(xi)=cifi(xi)=0(xi)=0,这说明 c i = 0 c_i=0 ci=0,从而所有的 c c c们都为 0 0 0,因此 f 1 , ⋯   , f n + 1 f_1,\cdots,f_{n+1} f1,,fn+1线性无关。

A 3 ) A3) A3)(重要)假设 ( X , d X ) (X,d_X) (X,dX) ( Y , d Y ) (Y,d_Y) (Y,dY)是距离空间, f : X → Y f:X\to Y f:XY是映射。假设 x 0 ∈ X x_0\in X x0X,如果对任意 X X X中的点列 { x n } n ≤ 1 , x n → d X x 0 \{x_n\}_{n\le1},x_n\xrightarrow{d_X}x_0 {xn}n1,xndX x0,我们都有 f ( x n ) → d Y f ( x 0 ) f(x_n)\xrightarrow{d_Y}f(x_0) f(xn)dY f(x0),我们就称 f f f x 0 x_0 x0处是连续的。如果 f f f在一切 x ∈ X x\in X xX处均连续,那么我们就称 f f f是距离空间之间的连续映射。假设 ( X , d X ) , ( Y , d Y ) (X,d_X),(Y,d_Y) (X,dX),(Y,dY) ( Z , d Z ) (Z,d_Z) (Z,dZ)是三个距离空间, f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:XY,g:YZ均为连续映射。证明,他们的复合 g ∘ f : X → Z g\circ f:X\to Z gf:XZ也是连续映射。

证明:设 { x n } n ≤ 1 ⊂ X \{x_n\}_{n\le1}\sub X {xn}n1X x n → x 0 x_n\to x_0 xnx0,那么根据 f f f的连续性有 f ( x n ) → f ( x 0 ) f(x_n)\to f(x_0) f(xn)f(x0),注意到此时 { f ( x n ) } n ≤ 1 ⊂ Y \{f(x_n)\}_{n\le1}\sub Y {f(xn)}n1Y,再根据 g g g的连续性有 g ( f ( x n ) ) → g ( f ( x 0 ) ) g(f(x_n))\to g(f(x_0)) g(f(xn))g(f(x0))也即 ( g ∘ f ) ( x n ) → ( g ∘ f ) ( x 0 ) (g\circ f)(x_n)\to(g\circ f)(x_0) (gf)(xn)(gf)(x0),根据定义这就表示 g ∘ f g\circ f gf是连续映射。

A 4 ) A4) A4) 假设 ( X , d X ) (X,d_X) (X,dX) ( Y , d Y ) (Y,d_Y) (Y,dY)是距离空间, f : X → Y f:X\to Y f:XY是连续映射。如果 d X ′ d'_X dX是与 d X d_X dX等价的距离, d Y ′ d'_Y dY是与 d Y d_Y dY等价的距离,那么,对于 ( X , d X ′ ) (X,d'_X) (X,dX) ( Y , d Y ′ ) (Y,d'_Y) (Y,dY)而言, f f f也是连续映射。

证明:这是因为在等价的距离下,收敛是同时的。

A 5 ) A5) A5) R n \R^n Rn上我们配有常见的距离,比如说 d 2 d_2 d2 ( X , d X ) (X,d_X) (X,dX)是距离空间。我们将映射 f : X → R n f:X\to\R^n f:XRn写成分量的形式:
f : X → R n , x ↦ f ( x ) = ( f 1 ( x ) , ⋯   , f n ( x ) ) f:X\to\R^n,x\mapsto f(x)=(f_1(x),\cdots,f_n(x)) f:XRn,xf(x)=(f1(x),,fn(x))
其中 f i : X → R f_i:X\to\R fi:XR是函数。证明, f f f是连续映射当且仅当对所有的 i = 1 , ⋯   , n i=1,\cdots,n i=1,,n f i f_i fi是连续函数。

证明:由习题(三) A 3 ) A3) A3)结合定义立得。

A 6 ) A6) A6)(重要)假设 ( X , d X ) (X,d_X) (X,dX)是距离空间, ( V , ∣ ∣ ⋅ ∣ ∣ ) (V,||\cdot||) (V,∣∣∣∣)是赋范线性空间, f : X → V f:X\to V f:XV g : X → V g:X\to V g:XV是连续映射。证明,它们的和与差(自然的定义) f ± g : X → V f\pm g:X\to V f±g:XV也是连续映射。如果 V = C V=\mathbb{C} V=C(或者 n × n n\times n n×n的矩阵构成的赋范线性空间),那么 f ⋅ g : X → C f\cdot g:X\to\mathbb{C} fg:XC是连续映射。如果 V = C V=\mathbb{C} V=C并且对任意的 x ∈ X , g ( x ) ≠ 0 x\in X,g(x)\neq0 xX,g(x)=0,那么 f / g : X → C f/g:X\to\mathbb{C} f/g:XC是连续映射。

证明:首先,假设 ⊕ ∈ { + , − , ⋅ , / } \oplus\in\{+,-,\cdot,/\} {+,,,/},当我们想要证明 f ⊕ g f\oplus g fg是连续映射时,只需要证明对于 { x n } n ≤ 1 ⊂ X , x n → x 0 \{x_n\}_{n\le1}\sub X,x_n\to x_0 {xn}n1X,xnx0,总是有 f ( x n ) ⊕ g ( x n ) → f ( x 0 ) ⊕ g ( x 0 ) f(x_n)\oplus g(x_n)\to f(x_0)\oplus g(x_0) f(xn)g(xn)f(x0)g(x0),由于已经有了 f ( x n ) → f ( x 0 ) , g ( x n ) → g ( x 0 ) f(x_n)\to f(x_0),g(x_n)\to g(x_0) f(xn)f(x0),g(xn)g(x0),本质上我们证明的是 V V V上数列极限与运算 ⊕ \oplus 的可交换性。

鉴于其他情况已经证明过了,这里对于 V = M n × n ( F ) , F ∈ { R , C } V=M_{n\times n}(\mathbb{F}),\mathbb{F}\in\{\R,\mathbb{C}\} V=Mn×n(F),F{R,C} n n n阶实(复)方阵组成的线性空间)的情形做一个证明。设 { A n } , { B n } \{A_n\},\{B_n\} {An},{Bn}是两个矩阵列,并且根据 M n × n ( F ) M_{n\times n}(\mathbb{F}) Mn×n(F)上的常用范数 ∣ ∣ ⋅ ∣ ∣ = ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||=||\cdot||_2 ∣∣∣∣=∣∣2分别收敛到 A , B A,B A,B,我们想要证明 A n B n → A B A_nB_n\to AB AnBnAB。首先不妨设 ∣ ∣ A n ∣ ∣ , ∣ ∣ B n ∣ ∣ ||A_n||,||B_n|| ∣∣An∣∣,∣∣Bn∣∣有公共的上界 M M M(这是由收敛性保证的),设 ε > 0 \varepsilon>0 ε>0,那么存在 N > 0 N>0 N>0使得对所有的 n > N n>N n>N都有
∣ ∣ A n − A ∣ ∣ < ε , ∣ ∣ B n − B ∣ ∣ < ε ||A_n-A||<\varepsilon,||B_n-B||<\varepsilon ∣∣AnA∣∣<ε,∣∣BnB∣∣<ε
因此
∣ ∣ A n B n − A B ∣ ∣ = ∣ ∣ A n B n − A n B + A n B − A B ∣ ∣ ≤ C ∣ ∣ A n ∣ ∣ ⋅ ∣ ∣ B n − B ∣ ∣ + C ∣ ∣ B ∣ ∣ ⋅ ∣ ∣ A n − A ∣ ∣ ≤ M C ( ∣ ∣ B n − B ∣ ∣ + ∣ ∣ A n − A ∣ ∣ ) < 2 M C ε ||A_nB_n-AB||=||A_nB_n-A_nB+A_nB-AB||\\ \le C||A_n||\cdot||B_n-B||+C||B||\cdot||A_n-A||\\ \le MC(||B_n-B||+||A_n-A||)<2MC\varepsilon ∣∣AnBnAB∣∣=∣∣AnBnAnB+AnBAB∣∣C∣∣An∣∣∣∣BnB∣∣+C∣∣B∣∣∣∣AnA∣∣MC(∣∣BnB∣∣+∣∣AnA∣∣)<2MCε
这就是要证的。

这里常数 C > 0 C>0 C>0使得对任意 n n n阶方阵 A , B A,B A,B都成立 ∣ ∣ A ⋅ B ∣ ∣ ≤ C ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ ||A\cdot B||\le C||A||\cdot||B|| ∣∣AB∣∣C∣∣A∣∣∣∣B∣∣,这样的 C C C是存在的,我们将证明这一点。用 A i , ⋅ A_{i,\cdot} Ai,表示 A A A的第 i i i行构成的行向量,用 A ⋅ , j A_{\cdot,j} A,j表示 A A A的第 j j j列构成的列向量,用 < ⋅ , ⋅ > <\cdot,\cdot> <,>表示 F n \mathbb{F^n} Fn上常见的内积 ( ( x 1 , ⋯   , x n ) , ( y 1 , ⋯   , y n ) ) ↦ x 1 y ˉ 1 + ⋯ + x n y ˉ n ((x_1,\cdots,x_n),(y_1,\cdots,y_n))\mapsto x_1\bar{y}_1+\cdots+x_n\bar{y}_n ((x1,,xn),(y1,,yn))x1yˉ1++xnyˉn,那么有
∣ ∣ A ⋅ B ∣ ∣ = ∑ i = 1 n ∑ j = 1 n ∣ < A i , ⋅ , B ⋅ , j > ∣ 2 ≤ ∑ i = 1 n ∑ j = 1 n ∣ ∣ A i , ⋅ ∣ ∣ 2 ⋅ ∣ ∣ B ⋅ , j ∣ ∣ 2 ≤ ∑ i = 1 n ∑ j = 1 n ∣ ∣ A ∣ ∣ 2 ⋅ ∣ ∣ B ∣ ∣ 2 = n 2 ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ ||A\cdot B||=\sqrt{\sum_{i=1}^n\sum_{j=1}^n|<A_{i,\cdot},B_{\cdot,j}>|^2}\\ \le\sqrt{\sum_{i=1}^n\sum_{j=1}^n||A_{i,\cdot}||^2\cdot||B_{\cdot,j}||^2}\le\sqrt{\sum_{i=1}^n\sum_{j=1}^n||A||^2\cdot||B||^2}\\=n^2||A||\cdot||B|| ∣∣AB∣∣=i=1nj=1n<Ai,,B,j>2 i=1nj=1n∣∣Ai,2∣∣B,j2 i=1nj=1n∣∣A2∣∣B2 =n2∣∣A∣∣∣∣B∣∣
这就是要证的。其中第一步放缩利用了内积空间上的 Cauchy-Schwarz \text{Cauchy-Schwarz} Cauchy-Schwarz不等式, ∣ ∣ A i , ⋅ ∣ ∣ ||A_{i,\cdot}|| ∣∣Ai,∣∣表示的是 < A i , ⋅ , A i , ⋅ > \sqrt{<A_{i,\cdot},A_{i,\cdot}>} <Ai,,Ai,>

A 7 ) A7) A7) 试找出 R \R R上定义的函数
f ( x ) = { 1 q , x = p q ∈ Q , p ∈ Z , q ∈ Z ≥ 1 且 p , q 互素 0 , x ∉ Q                                                       f(x)=\left\{ \begin{aligned} \frac{1}{q},x=\frac{p}{q}\in\mathbb{Q},p\in\Z,q\in\Z_{\ge1}且p,q互素\\ 0,x\notin\mathbb{Q}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\ \end{aligned} \right. f(x)= q1,x=qpQ,pZ,qZ1p,q互素0,x/Q                                                     
的所有不连续点。( f ( 0 ) : = 1 f(0):=1 f(0):=1

解:我们先来证明 f f f对于有理点 x 0 = p q x_0=\frac{p}{q} x0=qp(这里 p , q p,q p,q和题目的要求一致)是不连续的,这是因为无理数集在实数集中稠密,所以对于任意的 δ > 0 \delta>0 δ>0,区间 ( x 0 − δ , x 0 + δ ) (x_0-\delta,x_0+\delta) (x0δ,x0+δ)中总是包含至少一个无理数 x δ x_\delta xδ,此时 ∣ f ( x δ ) − f ( x 0 ) ∣ = 1 q |f(x_\delta)-f(x_0)|=\frac{1}{q} f(xδ)f(x0)=q1。因此,我们取 δ = 1 k \delta=\frac{1}{k} δ=k1,就得到了一个点列 { x k } k ≥ 1 \{x_k\}_{k\ge1} {xk}k1并且满足 ∣ x k − x ∣ < 1 k |x_k-x|<\frac{1}{k} xkx<k1 x k → x 0 x_k\to x_0 xkx0,然而 ∣ f ( x k ) − f ( x 0 ) ∣ = 1 q |f(x_k)-f(x_0)|=\frac{1}{q} f(xk)f(x0)=q1,这说明 f ( x k ) f(x_k) f(xk)并不收敛到 f ( x 0 ) f(x_0) f(x0),因此 f f f x 0 x_0 x0处不连续。接下来我们将要证明, f f f在所有的无理点都是连续的。

注意到无理数是可以被有理数无限逼近的,然而为了足够精确地逼近一个无理数,有理数的分母总是要取得比较大,因此可以操作的基本单位就更小了,就可以与无理数之间有更小的差距。想要无限地逼近无理数,分母就要取得无限大,从而这些有理数的函数值就会无限地趋于 0 0 0,这是 f f f在无理点连续的直观解释。我们的证明也是按照这个思路。

x 0 x_0 x0是一个无理点并且有 m < x 0 < m + 1 m<x_0<m+1 m<x0<m+1,其中 m ∈ Z m\in\Z mZ,设 ε > 0 \varepsilon>0 ε>0,让我们取出一个区间 ( x 0 − δ , x 0 + δ ) ⊂ ( m , m + 1 ) (x_0-\delta,x_0+\delta)\sub(m,m+1) (x0δ,x0+δ)(m,m+1),使得对任意的 x ∈ ( x 0 − δ , x 0 + δ ) x\in(x_0-\delta,x_0+\delta) x(x0δ,x0+δ)都有 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε,很明显,我们只要对 ( x 0 − δ , x 0 + δ ) (x_0-\delta,x_0+\delta) (x0δ,x0+δ)中的有理数证明就行了。我们题目中的有理数表示方式是有理数的最简表示,那么令
U ε : = { x ∈ ( m , m + 1 ) ∩ Q : x 的最简表示为 x = p q , 且 q ≤ 1 ε } U_\varepsilon:=\{x\in(m,m+1)\cap\mathbb{Q}:x的最简表示为x=\frac{p}{q},且q\le\frac{1}{\varepsilon}\} Uε:={x(m,m+1)Q:x的最简表示为x=qp,qε1}
注意到这个集合是有限集(因为其中满足条件的 q q q总是有限的,而对于确定的分母 q q q,分子 p p p的取值也只有 m q + 1 , … , m q + ( q − 1 ) mq+1,\dots,mq+(q-1) mq+1,,mq+(q1)),并且 x 0 ∉ U ε x_0\notin U_\varepsilon x0/Uε,因此对于一个有限集外的某点,总能在该点周围取一个邻域 ( x 0 − δ ε , x 0 + δ ε ) (x_0-\delta_\varepsilon,x_0+\delta_\varepsilon) (x0δε,x0+δε)不包含任何一个有限集中的点,从而对于所有的有理数 x ∈ ( x 0 − δ ε , x 0 + δ ε ) x\in(x_0-\delta_\varepsilon,x_0+\delta_\varepsilon) x(x0δε,x0+δε),它们的分母都大于 1 ε \frac{1}{\varepsilon} ε1(这是因为所有分母 ≤ 1 ε \le\frac{1}{\varepsilon} ε1的点都落在 U ε U_\varepsilon Uε当中),即 f ( x ) = 1 q x < ε f(x)=\frac{1}{q_x}<\varepsilon f(x)=qx1<ε,从而 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε就对所有的 x ∈ ( x − δ ε , x + δ ε ) x\in(x-\delta_\varepsilon,x+\delta_\varepsilon) x(xδε,x+δε)都成立了。

现在,假设有 { x n } ≥ 1 ⊂ R \{x_n\}_{\ge1}\sub \R {xn}1R并且 x n → x 0 x_n\to x_0 xnx0,这说明对于刚才选出的 δ ε \delta_\varepsilon δε,就存在 N > 0 N>0 N>0使得 ∣ x n − x 0 ∣ < δ ε |x_n-x_0|<\delta_\varepsilon xnx0<δε对所有的 n > N n>N n>N都成立,也即此时 x n ∈ ( x 0 − δ ε , x 0 + δ ε ) x_n\in(x_0-\delta_\varepsilon,x_0+\delta_\varepsilon) xn(x0δε,x0+δε),根据刚才的分析,此时一定有 ∣ f ( x n ) − f ( x 0 ) ∣ < ε |f(x_n)-f(x_0)|<\varepsilon f(xn)f(x0)<ε。那么,(从选取 ε > 0 \varepsilon>0 ε>0开始的)整个过程就是
lim ⁡ n → ∞ f ( x n ) = f ( x 0 ) \lim_{n\to\infin}f(x_n)=f(x_0) nlimf(xn)=f(x0)
ε − N \varepsilon-N εN语言下的定义,这就完成了证明。

下面三道题应该出现在下一节的习题中

A 8 ) A8) A8) 计算 lim ⁡ x → 0 e x − 1 x \lim_{x\to0}\frac{e^x-1}{x} limx0xex1

解:
e x − 1 x = ∑ n = 0 ∞ x n n ! − 1 x = ∑ n = 0 ∞ x n + 1 ( n + 1 ) ! x = ∑ n = 0 ∞ x n ( n + 1 ) ! = 1 + x ∑ n = 0 ∞ x n ( n + 2 ) ! \frac{e^x-1}{x}=\frac{\sum_{n=0}^\infin\frac{x^n}{n!}-1}{x}=\frac{\sum_{n=0}^\infin\frac{x^{n+1}}{(n+1)!}}{x}=\sum_{n=0}^\infin\frac{x^{n}}{(n+1)!}=1+x\sum_{n=0}^\infin\frac{x^{n}}{(n+2)!} xex1=xn=0n!xn1=xn=0(n+1)!xn+1=n=0(n+1)!xn=1+xn=0(n+2)!xn
我们不妨设 ∣ x ∣ < δ |x|<\delta x<δ,那么有
∣ e x − 1 x − 1 ∣ = ∣ x ∣ ⋅ ∣ ∑ n = 0 ∞ x n ( n + 2 ) ! ∣ ≤ ∣ x ∣ ⋅ ∑ n = 0 ∞ ∣ x ∣ n n ! ≤ ∣ x ∣ ⋅ ∑ n = 0 ∞ δ n n ! = ∣ x ∣ e δ → 0 |\frac{e^x-1}{x}-1|=|x|\cdot|\sum_{n=0}^\infin\frac{x^n}{(n+2)!}|\le|x|\cdot\sum_{n=0}^\infin\frac{|x|^n}{n!}\le|x|\cdot\sum_{n=0}^\infin\frac{\delta^n}{n!}=|x|e^\delta\to0 xex11∣=xn=0(n+2)!xnxn=0n!xnxn=0n!δn=xeδ0
这就说明 e x − 1 x → 1 \frac{e^x-1}{x}\to1 xex11

A 9 ) A9) A9) 计算 lim ⁡ x → + ∞ ( 1 + 1 x ) x \lim_{x\to+\infin}(1+\frac{1}{x})^x limx+(1+x1)x

解:用 [ ⋅ ] [\cdot] []表示向下取整,有
( 1 + 1 [ x ] + 1 ) [ x ] ≤ ( 1 + 1 x ) x ≤ ( 1 + 1 [ x ] ) [ x ] + 1 (1+\frac{1}{[x]+1})^{[x]}\le(1+\frac{1}{x})^x\le(1+\frac{1}{[x]})^{[x]+1} (1+[x]+11)[x](1+x1)x(1+[x]1)[x]+1
不难发现两边都相当于是数列的极限并且容易计算出它们的极限都是 e e e,根据夹逼定理有 ( 1 + 1 x ) x → e (1+\frac{1}{x})^x\to e (1+x1)xe

A 10 ) A10) A10) 计算 lim ⁡ x → − ∞ ( 1 + 1 x ) x \lim_{x\to-\infin}(1+\frac{1}{x})^x limx(1+x1)x

解:这相当于要证 lim ⁡ x → + ∞ ( 1 − 1 x ) − x \lim_{x\to+\infin}(1-\frac{1}{x})^{-x} limx+(1x1)x,而
( 1 − 1 x ) − x = ( x x − 1 ) x = ( 1 − 1 x − 1 ) x − 1 ⋅ ( 1 − 1 x − 1 ) → e ⋅ 1 = e (1-\frac{1}{x})^{-x}=(\frac{x}{x-1})^x=(1-\frac{1}{x-1})^{x-1}\cdot(1-\frac{1}{x-1})\to e\cdot1=e (1x1)x=(x1x)x=(1x11)x1(1x11)e1=e
其中 ( 1 − 1 x − 1 ) x − 1 → e (1-\frac{1}{x-1})^{x-1}\to e (1x11)x1e直接来源于 A 9 ) A9) A9)


习题 B : B: B: 级数的基本计算技巧与收敛判断

B 1 ) B1) B1) 试计算下列级数

( 1 ) ∑ n = 1 ∞ 1 n ( n + 1 ) = lim ⁡ n → ∞ ∑ k = 1 n ( 1 k − 1 k + 1 ) = lim ⁡ n → ∞ ( 1 − 1 n + 1 ) = 1 (1)\sum_{n=1}^\infin\frac{1}{n(n+1)}=\lim_{n\to\infin}\sum_{k=1}^n(\frac{1}{k}-\frac{1}{k+1})=\lim_{n\to\infin}(1-\frac{1}{n+1})=1 (1)n=1n(n+1)1=limnk=1n(k1k+11)=limn(1n+11)=1

( 2 ) ∑ n = 1 ∞ 1 4 n 2 − 1 = 1 2 ∑ n = 1 ∞ ( 1 2 n − 1 − 1 2 n + 1 ) = 1 2 (2)\sum_{n=1}^\infin\frac{1}{4n^2-1}=\frac{1}{2}\sum_{n=1}^\infin(\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2} (2)n=14n211=21n=1(2n112n+11)=21

( 3 ) ∑ n = 1 ∞ 1 n ( n + 1 ) ( n + 2 ) = 1 2 ∑ n = 1 ∞ ( 1 n ( n + 1 ) − 1 ( n + 1 ) ( n + 2 ) ) = 1 4 (3)\sum_{n=1}^\infin\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\sum_{n=1}^\infin(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)})=\frac{1}{4} (3)n=1n(n+1)(n+2)1=21n=1(n(n+1)1(n+1)(n+2)1)=41

( 4 ) ∑ n = 1 ∞ arctan ⁡ 1 n 2 + n + 1 = ∑ n = 1 ∞ arctan ⁡ ( ( n + 1 ) − n 1 + ( n + 1 ) n ) = ∑ n = 1 ∞ arctan ⁡ ( n + 1 ) − arctan ⁡ n (4)\sum_{n=1}^\infin\arctan\frac{1}{n^2+n+1}=\sum_{n=1}^\infin\arctan(\frac{(n+1)-n}{1+(n+1)n})=\sum_{n=1}^\infin\arctan(n+1)-\arctan n (4)n=1arctann2+n+11=n=1arctan(1+(n+1)n(n+1)n)=n=1arctan(n+1)arctann

由于 arctan ⁡ \arctan arctan是增函数并且有上确界 π 2 \frac{\pi}{2} 2π,上面的式子就等于 π 2 − π 4 = π 4 \frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} 2π4π=4π

( 5 ) ∑ n = 0 ∞ ( − 1 ) n + 2 3 n = ∑ n = 0 ∞ ( − 1 3 ) n + 2 ( 1 3 ) n (5)\sum_{n=0}^\infin\frac{(-1)^n+2}{3^n}=\sum_{n=0}^\infin(-\frac{1}{3})^n+2(\frac{1}{3})^n (5)n=03n(1)n+2=n=0(31)n+2(31)n

为了解题的方便让我们来推导等比级数的一般公式,首项为 a a a公比为 q ( ∣ q ∣ < 1 ) q(|q|<1) q(q<1)的等比级数为
∑ n = 0 ∞ a q n = a lim ⁡ n → ∞ ∑ k = 0 n q k = a lim ⁡ n → ∞ 1 − q n + 1 1 − q = a 1 − q \sum_{n=0}^\infin aq^n=a\lim_{n\to\infin}\sum_{k=0}^nq^k=a\lim_{n\to\infin}\frac{1-q^{n+1}}{1-q}=\frac{a}{1-q} n=0aqn=anlimk=0nqk=anlim1q1qn+1=1qa

在上面的式子应用这个公式得到 1 1 − ( − 1 / 3 ) + 2 1 − 1 / 3 = 15 4 \frac{1}{1-(-1/3)}+\frac{2}{1-1/3}=\frac{15}{4} 1(1/3)1+11/32=415

( 6 ) (6) (6) 为了解题的方便我们来推导差比级数的一般公式,以下 ∣ q ∣ < 1 |q|<1 q<1

   ∑ n = 1 ∞ n q n = 1 ⋅ q + 2 ⋅ q 2 + 3 ⋅ q 3 + ⋯ + n ⋅ q n + ⋯ ~~\sum_{n=1}^\infin nq^n=1\cdot q+2\cdot q^2+3\cdot q^3+\cdots+n\cdot q^n+\cdots   n=1nqn=1q+2q2+3q3++nqn+
q ∑ n = 1 ∞ n q n =             1 ⋅ q 2 + 2 ⋅ q 3 + ⋯ + ( n − 1 ) ⋅ q n + ⋯ q\sum_{n=1}^\infin nq^n=~~~~~~~~~~~1\cdot q^2+2\cdot q^3 +\cdots +(n-1)\cdot q^n+\cdots qn=1nqn=           1q2+2q3++(n1)qn+

两式相减得到
( 1 − q ) ∑ n = 1 ∞ n q n = q + q 2 + ⋯ + q n + ⋯ = q 1 − q (1-q)\sum_{n=1}^\infin nq^n=q+q^2+\cdots+q^n+\cdots=\frac{q}{1-q} (1q)n=1nqn=q+q2++qn+=1qq
从而
∑ n = 1 ∞ n q n = q ( 1 − q ) 2 \sum_{n=1}^\infin nq^n=\frac{q}{(1-q)^2} n=1nqn=(1q)2q

直接代入公式得到 ∑ n = 1 ∞ n 3 n = 1 / 3 ( 1 − 1 / 3 ) 2 = 3 4 \sum_{n=1}^\infin\frac{n}{3^n}=\frac{1/3}{(1-1/3)^2}=\frac{3}{4} n=13nn=(11/3)21/3=43

( 7 ) ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 = ∑ n = 1 ∞ ( − 1 2 ) n − 1 = 1 1 − ( − 1 / 2 ) = 3 2 (7)\sum_{n=1}^\infin\frac{(-1)^{n-1}}{2^{n-1}}=\sum_{n=1}^\infin(-\frac{1}{2})^{n-1}=\frac{1}{1-(-1/2)}=\frac{3}{2} (7)n=12n1(1)n1=n=1(21)n1=1(1/2)1=23

( 8 ) ∑ n = 1 ∞ 2 n − 1 2 n = 2 ∑ n = 1 ∞ n 2 n − ∑ n = 1 ∞ 1 2 n = 2 ⋅ 1 / 2 ( 1 − 1 / 2 ) 2 − 1 / 2 1 − 1 / 2 = 3 (8)\sum_{n=1}^\infin\frac{2n-1}{2^n}=2\sum_{n=1}^\infin\frac{n}{2^n}-\sum_{n=1}^\infin\frac{1}{2^n}=2\cdot\frac{1/2}{(1-1/2)^2}-\frac{1/2}{1-1/2}=3 (8)n=12n2n1=2n=12nnn=12n1=2(11/2)21/211/21/2=3

( 9 ) ∑ n = 1 ∞ 2 n + 1 n 2 ( n + 1 ) 2 = ∑ n = 1 ∞ ( 1 n 2 − 1 ( n + 1 ) 2 ) = 1 (9)\sum_{n=1}^\infin\frac{2n+1}{n^2(n+1)^2}=\sum_{n=1}^\infin(\frac{1}{n^2}-\frac{1}{(n+1)^2})=1 (9)n=1n2(n+1)22n+1=n=1(n21(n+1)21)=1

( 10 ) ∑ n = 1 ∞ ( n + 2 − 2 n + 1 + n ) = ∑ n = 1 ∞ 1 n + 2 + n + 1 − 1 n + 1 + n = 0 − 1 2 + 1 = 1 − 2 (10)\sum_{n=1}^\infin(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})=\sum_{n=1}^\infin\frac{1}{\sqrt{n+2}+\sqrt{n+1}}-\frac{1}{\sqrt{n+1}+\sqrt{n}}=0-\frac{1}{\sqrt{2}+1}=1-\sqrt{2} (10)n=1(n+2 2n+1 +n )=n=1n+2 +n+1 1n+1 +n 1=02 +11=12

( 11 ) ∑ n = 1 ∞ log ⁡ ( n ( 2 n + 1 ) ( n + 1 ) ( 2 n − 1 ) ) = ∑ n = 1 ∞ ( ( log ⁡ n − log ⁡ ( n + 1 ) ) + ( log ⁡ ( 2 n + 1 ) − log ⁡ ( 2 n − 1 ) ) ) (11)\sum_{n=1}^\infin\log(\frac{n(2n+1)}{(n+1)(2n-1)})=\sum_{n=1}^\infin((\log n-\log(n+1))+(\log(2n+1)-\log(2n-1))) (11)n=1log((n+1)(2n1)n(2n+1))=n=1((lognlog(n+1))+(log(2n+1)log(2n1)))

上面这个级数的前 n n n项部分和为
∑ k = 1 n ( ( log ⁡ k − log ⁡ ( k + 1 ) ) + ( log ⁡ ( 2 k + 1 ) − log ⁡ ( 2 k − 1 ) ) ) = − log ⁡ ( n + 1 ) + log ⁡ ( 2 n + 1 ) = log ⁡ ( 2 n + 1 n + 1 ) → log ⁡ 2 \sum_{k=1}^n((\log k-\log(k+1))+(\log(2k+1)-\log(2k-1)))=-\log(n+1)+\log(2n+1)\\ =\log(\frac{2n+1}{n+1})\to\log2 k=1n((logklog(k+1))+(log(2k+1)log(2k1)))=log(n+1)+log(2n+1)=log(n+12n+1)log2
提前借用一下 log ⁡ \log log的连续性就有上面的最后一步。

( 12 ) ∑ n = 1 ∞ 1 n ( n + m ) = 1 m ∑ n = 1 ∞ ( 1 n − 1 n + m ) = 1 m ( 1 + 1 2 + ⋯ + 1 m ) (12)\sum_{n=1}^\infin\frac{1}{n(n+m)}=\frac{1}{m}\sum_{n=1}^\infin(\frac{1}{n}-\frac{1}{n+m})=\frac{1}{m}(1+\frac{1}{2}+\cdots+\frac{1}{m}) (12)n=1n(n+m)1=m1n=1(n1n+m1)=m1(1+21++m1)

B 2 ) B2) B2) 试判断下列级数的收敛性。

( 1 ) ∑ n = 1 ∞ ( n + 1 − n ) = lim ⁡ n → ∞ ∑ k = 1 n ( k + 1 − k ) = lim ⁡ n → ∞ n + 1 − 1 → + ∞ (1)\sum_{n=1}^\infin(\sqrt{n+1}-\sqrt{n})=\lim_{n\to\infin}\sum_{k=1}^n(\sqrt{k+1}-\sqrt{k})=\lim_{n\to\infin}\sqrt{n+1}-1\to+\infin (1)n=1(n+1 n )=limnk=1n(k+1 k )=limnn+1 1+是发散的。

( 2 ) ∑ n = 1 ∞ n + 1 − n n = ∑ n = 1 ∞ 1 n ( n + 1 + n ) ≤ ∑ n = 1 ∞ 1 n 3 2 (2)\sum_{n=1}^\infin\frac{\sqrt{n+1}-\sqrt{n}}{n}=\sum_{n=1}^\infin\frac{1}{n(\sqrt{n+1}+\sqrt{n})}\le\sum_{n=1}^\infin\frac{1}{n^\frac{3}{2}} (2)n=1nn+1 n =n=1n(n+1 +n )1n=1n231是收敛的。

( 3 ) (3) (3) α n = n n − 1 \alpha_n=\sqrt[n]{n}-1 αn=nn 1,即 ( 1 + α n ) n = n (1+\alpha_n)^n=n (1+αn)n=n,利用二项式定理有
n = ( 1 + α n ) n ≥ n ( n − 1 ) 2 α n 2 n=(1+\alpha_n)^n\ge\frac{n(n-1)}{2}\alpha_n^2 n=(1+αn)n2n(n1)αn2
因此 α n 2 ≤ 1 n − 1 \alpha_n^2\le\frac{1}{n-1} αn2n11,又注意到正项数列 α n → 0 \alpha_n\to0 αn0,这说明存在 N 1 > 0 N_1>0 N1>0,当 n > N 1 n>N_1 n>N1时有 α n < 1 \alpha_n<1 αn<1。现在取 N = max ⁡ { N 1 , 4 } N=\max\{N_1,4\} N=max{N1,4},从而
∑ n = N + 1 ∞ ( n n − 1 ) n = ∑ n = N + 1 ∞ α n n ≤ ∑ n = N + 1 ∞ α n 4 ≤ ∑ n = N + 1 ∞ 1 ( n − 1 ) 2 \sum_{n=N+1}^\infin(\sqrt[n]{n}-1)^n=\sum_{n=N+1}^\infin\alpha_n^n\le\sum_{n=N+1}^\infin\alpha_n^4\le\sum_{n=N+1}^\infin\frac{1}{(n-1)^2} n=N+1(nn 1)n=n=N+1αnnn=N+1αn4n=N+1(n1)21
而最右边的级数是收敛的,再加上有限数 ∑ n = 2 N ( n n − 1 ) n \sum_{n=2}^N(\sqrt[n]{n}-1)^n n=2N(nn 1)n得到原级数收敛。

( 4 ) (4) (4) 显然在 ∣ x ∣ ≤ 1 |x|\le1 x1的时候一般项是不收敛到 0 0 0的。下面我们讨论 ∣ x ∣ > 1 |x|>1 x>1的情况。先假设 x > 0 x>0 x>0,这时
∑ n = 1 ∞ 1 1 + x n ≤ ∑ n = 1 ∞ ( 1 x ) n \sum_{n=1}^\infin\frac{1}{1+x^n}\le\sum_{n=1}^\infin(\frac{1}{x})^n n=11+xn1n=1(x1)n
不等号的右边是等比级数从而收敛。当 x < 0 x<0 x<0时我们有
∑ k = 0 ∞ 1 1 + x 2 k ≤ ∑ k = 0 ∞ 1 ( x 2 ) k \sum_{k=0}^\infin\frac{1}{1+x^{2k}}\le\sum_{k=0}^\infin\frac{1}{(x^2)^k} k=01+x2k1k=0(x2)k1
是收敛的,同时
∑ k = 0 ∞ ∣ 1 1 + x 2 k − 1 ∣ = ∑ k = 0 ∞ 1 ∣ ∣ x ∣ 2 k − 1 − 1 ∣ ≤ ∑ k = 0 K 1 ∣ ∣ x ∣ 2 k − 1 − 1 ∣   + ∑ k = K + 1 ∞ 1 ∣ x ∣ 2 k − 2 \sum_{k=0}^\infin|\frac{1}{1+x^{2k-1}}|=\sum_{k=0}^\infin\frac{1}{||x|^{2k-1}-1|}\le\sum_{k=0}^K\frac{1}{||x|^{2k-1}-1|}~+\sum_{k=K+1}^\infin\frac{1}{|x|^{2k-2}} k=01+x2k11=k=0∣∣x2k11∣1k=0K∣∣x2k11∣1 +k=K+1x2k21
最右侧是等比级数,所以其奇数项级数绝对收敛,其中 K K K使得对所有的 k > K k>K k>K都成立 ∣ x ∣ 2 k − 1 − ∣ x ∣ 2 k − 2 ≥ 1 |x|^{2k-1}-|x|^{2k-2}\ge1 x2k1x2k21,这样的 K K K是存在的因为 ∣ x ∣ 2 k − 1 − ∣ x ∣ 2 k − 2 = ∣ x 2 k − 2 ∣ ( ∣ x ∣ − 1 ) → + ∞ |x|^{2k-1}-|x|^{2k-2}=|x^{2k-2}|(|x|-1)\to+\infin x2k1x2k2=x2k2(x1)+。现在我们有
∑ k = 0 n ∣ 1 1 + x n ∣ ≤ ∑ k = 0 ∞ 1 1 + x 2 k + ∑ k = 0 ∞ 1 ∣ ∣ x ∣ 2 k − 1 − 1 ∣ \sum_{k=0}^n|\frac{1}{1+x^n}|\le\sum_{k=0}^\infin\frac{1}{1+x^{2k}}+\sum_{k=0}^\infin\frac{1}{||x|^{2k-1}-1|} k=0n1+xn1k=01+x2k1+k=0∣∣x2k11∣1
所以 ∑ n = 0 ∞ 1 1 + x n \sum_{n=0}^\infin\frac{1}{1+x^n} n=01+xn1绝对收敛从而收敛。

( 5 ) ∑ n = 1 ∞ 1 n 2 n ≤ ∑ n = 1 ∞ 1 2 n (5) \sum_{n=1}^\infin\frac{1}{n2^n}\le\sum_{n=1}^\infin\frac{1}{2^n} (5)n=1n2n1n=12n1

右侧是等比级数从而收敛。

( 6 ) (6) (6) 注意到
n 2 3 n 2 + 1 → 1 3 \frac{n^2}{3n^2+1}\to\frac{1}{3} 3n2+1n231
这说明存在 N > 0 N>0 N>0使得 n 2 3 n 2 + 1 < 2 3 \frac{n^2}{3n^2+1}<\frac{2}{3} 3n2+1n2<32对于所有的 n > N n>N n>N成立,因此
∑ n = 1 ∞ ( n 2 3 n 2 + 1 ) n ≤ ∑ n = 1 N ( n 2 3 n 2 + 1 ) n + ∑ n = N + 1 ∞ ( 2 3 ) n \sum_{n=1}^\infin(\frac{n^2}{3n^2+1})^n\le\sum_{n=1}^N(\frac{n^2}{3n^2+1})^n+\sum_{n=N+1}^\infin(\frac{2}{3})^n n=1(3n2+1n2)nn=1N(3n2+1n2)n+n=N+1(32)n
右侧是常数与等比级数的和从而是收敛的。

( 7 ) ∑ n = 1 ∞ 1 n 1 + 1 / n = ∑ n = 1 ∞ ( 1 n ) 1 n n (7) \sum_{n=1}^\infin\frac{1}{n^{1+1/n}}=\sum_{n=1}^\infin(\frac{1}{n})\frac{1}{\sqrt[n]{n}} (7)n=1n1+1/n1=n=1(n1)nn 1

由于 1 n n → 1 \frac{1}{\sqrt[n]{n}}\to1 nn 11,并且 1 n n < 1 \frac{1}{\sqrt[n]{n}}<1 nn 1<1,存在 N > 0 N>0 N>0使得对所有的 n > N n>N n>N都有 1 n n > 1 2 \frac{1}{\sqrt[n]{n}}>\frac{1}{2} nn 1>21,因此有
∑ n = 1 ∞ ( 1 n ) 1 n n > ∑ n = 1 N ( 1 n ) 1 n n + 1 2 ∑ n = N + 1 ∞ 1 n \sum_{n=1}^\infin(\frac{1}{n})\frac{1}{\sqrt[n]{n}}>\sum_{n=1}^N(\frac{1}{n})\frac{1}{\sqrt[n]{n}}+\frac{1}{2}\sum_{n=N+1}^\infin\frac{1}{n} n=1(n1)nn 1>n=1N(n1)nn 1+21n=N+1n1
最右侧是调和级数与常数的和从而是发散的。

其实课程中还没有出现 log ⁡ \log log的严格定义,但我们还是提前借用一下对数函数的有关性质

( 8 ) (8) (8) 根据 ( log ⁡ n ) log ⁡ n = e log ⁡ n ⋅ log ⁡ ( log ⁡ n ) = n log ⁡ ( log ⁡ n ) (\log n)^{\log n}=e^{\log n\cdot\log(\log n)}=n^{\log(\log n)} (logn)logn=elognlog(logn)=nlog(logn)
∑ n = 2 ∞ 1 ( log ⁡ n ) log ⁡ n = ∑ n = 2 ∞ 1 n log ⁡ ( log ⁡ n ) = ∑ n = 2 N 1 n log ⁡ ( log ⁡ n ) + ∑ n = N + 1 ∞ 1 n 2 \sum_{n=2}^\infin\frac{1}{(\log n)^{\log n}}=\sum_{n=2}^\infin\frac{1}{n^{\log(\log n)}}=\sum_{n=2}^N\frac{1}{n^{\log(\log n)}}+\sum_{n=N+1}^\infin\frac{1}{n^2} n=2(logn)logn1=n=2nlog(logn)1=n=2Nnlog(logn)1+n=N+1n21
右侧是收敛级数与常数的和的因此是收敛的,其中 N > 0 N>0 N>0使得对所有的 n > N n>N n>N都有 ln ⁡ ( ln ⁡ n ) > 2 \ln(\ln n) > 2 ln(lnn)>2,这样的 n n n是存在的因为 log ⁡ ( l o g n ) → + ∞ \log(\\log n)\to+\infin log(logn)+

( 9 ) (9) (9) 由于
( 1 2 ) n ≤ ( 1 1 + 1 n 2 ) n < 1 (\frac{1}{2})^n\le(\frac{1}{1+\frac{1}{n^2}})^n<1 (21)n(1+n211)n<1
有夹逼定理得中间的数列收敛到 1 1 1,因此一般项
n n + 1 n ( n + 1 n ) n = ( 1 1 + 1 n 2 ) n ⋅ n n → 1 \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n}=(\frac{1}{1+\frac{1}{n^2}})^n\cdot\sqrt[n]{n}\to1 (n+n1)nnn+n1=(1+n211)nnn 1
并不收敛到 0 0 0,从而级数是发散的。

( 10 ) (10) (10) 注意到
n n + 1 = 1 n + 1 n \frac{\sqrt{n}}{n+1}=\frac{1}{\sqrt{n}+\frac{1}{\sqrt{n}}} n+1n =n +n 11
是单调递减并且趋于零的数列,根据习题(三) A 5 ) A5) A5)(这也称为 Leibniz \text{Leibniz} Leibniz判别法)这个级数是收敛的。

( 11 ) (11) (11) 显然一般项不收敛从而级数不收敛。

( 12 ) (12) (12) 首先
1 + ⋯ + 1 n n → 0 \frac{1+\cdots+\frac{1}{n}}{n}\to0 n1++n10
这来源于 Ces a ˋ ro \text{Ces\`aro} Cesaˋro和的性质(见习题(三) D 1 ) D1) D1)),另外显然有
1 + ⋯ + 1 n n > 1 + ⋯ + 1 n + 1 n + 1 \frac{1+\cdots+\frac{1}{n}}{n}>\frac{1+\cdots+\frac{1}{n+1}}{n+1} n1++n1>n+11++n+11
这来自糖水不等式。所以数列 { 1 n ∑ k = 1 n 1 k } \{\frac{1}{n}\sum_{k=1}^n\frac{1}{k}\} {n1k=1nk1}是单调趋于零的。另外
∑ n = 1 N sin ⁡ n x = 1 sin ⁡ x ∑ n = 1 N sin ⁡ x sin ⁡ n x = 1 2 sin ⁡ x ∑ n = 1 N ( cos ⁡ ( n − 1 ) x − cos ⁡ ( n + 1 ) x ) = 1 2 sin ⁡ x ( 1 − cos ⁡ ( N + 1 ) x ) \sum_{n=1}^N \sin nx=\frac{1}{\sin x}\sum_{n=1}^N\sin x\sin nx=\frac{1}{2\sin x}\sum_{n=1}^N(\cos(n-1)x-\cos(n+1)x)=\frac{1}{2\sin x}(1-\cos(N+1)x) n=1Nsinnx=sinx1n=1Nsinxsinnx=2sinx1n=1N(cos(n1)xcos(n+1)x)=2sinx1(1cos(N+1)x)
这明显是有界的。在上面的式子中我们假定了 sin ⁡ x ≠ 0 \sin x\neq0 sinx=0,如果 sin ⁡ x = 0 \sin x=0 sinx=0则数列的每一项都为0,我们总能得到 { sin ⁡ n x } \{\sin nx\} {sinnx}的部分和数列是有界的。因此,根据 Dirichlet \text{Dirichlet} Dirichlet判别法,有原来的级数收敛。

B 3 ) B3) B3) 试判断下列级数的收敛性并确定它们是否绝对收敛。

( 1 ) (1) (1) { 1 n log ⁡ n } \{\frac{1}{n\log n}\} {nlogn1}是单调趋于零的所以依 Leibniz \text{Leibniz} Leibniz判别法原来的级数是收敛的。而对于级数 ∑ n = 2 ∞ ∣ ( − 1 ) n 1 n log ⁡ n ∣ = ∑ n = 2 ∞ 1 n log ⁡ n \sum_{n=2}^\infin|(-1)^n\frac{1}{n\log n}|=\sum_{n=2}^\infin\frac{1}{n\log n} n=2(1)nnlogn1=n=2nlogn1,由于我们有 e x ≥ 1 + x e^x\ge1+x ex1+x,取对数(再结合对数函数的单调性)有 x ≥ log ⁡ ( 1 + x ) x\ge\log(1+x) xlog(1+x)也即 log ⁡ x ≥ x − 1 \log x\ge x-1 logxx1,用 1 n \frac{1}{n} n1替换 x x x log ⁡ n ≤ 1 − 1 n \log n\le1-\frac{1}{n} logn1n1,因此
∑ n = 2 ∞ 1 n log ⁡ n ≥ ∑ n = 2 ∞ 1 n − 1 \sum_{n=2}^\infin\frac{1}{n\log n}\ge\sum_{n=2}^\infin\frac{1}{n-1} n=2nlogn1n=2n11
后面是调和级数所以是发散的,因此原来的级数并不绝对收敛。

( 2 ) (2) (2) { sin ⁡ n π 4 } \{\sin \frac{n\pi}{4}\} {sin4}很明显是部分和有界的,因为这就是数列 1 , 2 2 , 0 , − 2 2 , − 1 , − 2 2 , 0 , 2 2 , ⋯ 1,\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2},-1,-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2},\cdots 1,22 ,0,22 ,1,22 ,0,22 ,,另外 { log ⁡ n } \{\log n\} {logn}是单调趋于零的,所以根据 Dirichlet \text{Dirichlet} Dirichlet判别法,级数是收敛的。

为了证明它不是绝对收敛的,我们只取使得 sin ⁡ n π 4 = 1 \sin\frac{n\pi}{4}=1 sin4=1的那些 n n n,也即 n π 4 = π 2 + 2 k ⋅ π \frac{n\pi}{4}=\frac{\pi}{2}+2k\cdot\pi 4=2π+2kπ,此时 n = 2 + 8 k , k ∈ Z ≥ 0 n=2+8k,k\in\Z_{\ge0} n=2+8k,kZ0,因此有:
∑ n = 2 ∞ ∣ sin ⁡ ( n π 4 ) log ⁡ n ∣ ≥ ∑ k = 0 ∞ 1 8 k + 2 ≥ ∑ k = 0 ∞ 1 9 1 k + 1 \sum_{n=2}^\infin|\frac{\sin(\frac{n\pi}{4})}{\log n}|\ge\sum_{k=0}^\infin\frac{1}{8k+2}\ge\sum_{k=0}^\infin\frac{1}{9}\frac{1}{k+1} n=2lognsin(4)k=08k+21k=091k+11
最右侧是调和级数的正数倍所以是发散的,其中第一个不等号用到了 log ⁡ n < n \log n<n logn<n这一不等式,第二个不等号用到了 2 ≤ k + 9 2\le k+9 2k+9。因此原来的级数并不绝对收敛。

( 3 ) (3) (3) { ( − 1 ) n n − 1 n + 1 } \{(-1)^n\frac{n-1}{n+1}\} {(1)nn+1n1}是部分和有界的因为每次部分和会不断加上、减去绝对值小于 1 1 1的数,而 { 1 n 3 } \{\frac{1}{\sqrt[3]{n}}\} {3n 1}单调趋于零,根据 Dirichlet \text{Dirichlet} Dirichlet判别法自然有级数收敛,但这不是绝对收敛的因为
∑ n = 1 ∞ ∣ ( − 1 ) n n − 1 n + 1 1 n 3 ∣ ≥ 1 2 ∑ n = 1 ∞ 1 n 1 3 \sum_{n=1}^\infin|(-1)^n\frac{n-1}{n+1}\frac{1}{\sqrt[3]{n}}|\ge\frac{1}{2}\sum_{n=1}^\infin\frac{1}{n^{\frac{1}{3}}} n=1(1)nn+1n13n 121n=1n311
最右边的级数是发散的所以原来的级数并不绝对收敛。

( 4 ) (4) (4) 由于 a n = e n log ⁡ a ≥ 1 12 ! ( n log ⁡ a ) 12 a^n=e^{n\log a}\ge\frac{1}{12!}(n\log a)^{12} an=enloga12!1(nloga)12,所以
∑ n = 1 ∞ ∣ ( − 1 ) n ( n − 1 ) 2 n 10 a n ∣ ≤ ∑ n = 1 ∞ 12 ! ( log ⁡ a ) 12 1 n 2 \sum_{n=1}^\infin|(-1)^{\frac{n(n-1)}{2}}\frac{n^{10}}{a^n}|\le\sum_{n=1}^\infin\frac{12!}{(\log a)^{12}}\frac{1}{n^2} n=1(1)2n(n1)ann10n=1(loga)1212!n21
右边是收敛的级数的正数倍,所以这个级数绝对收敛,因此自然是收敛的。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值