GEE:随机森林分类教程(样本制作、特征添加、训练、精度、参数优化、贡献度、统计面积)

本文详细介绍了如何在Google Earth Engine (GEE)上运用随机森林进行分类,涵盖样本点制作、特征变量添加、模型训练、精度评估、参数优化、特征贡献度分析和统计面积等步骤。适用于土地利用分类、森林监测等多个场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_


本文将介绍在Google Earth Engine (GEE)平台上进行随机森林分类的方法和代码,其中包括制作样本点教程(本地、在线和本地在线混合制作样本点,合并样本点等),加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),运行随机森林分类器教程,并可将分类器模型应用于像素尺度或者超像素(对象/斑块)尺度数据,计算随机森林分类结果的精度(精度参数以csv格式下载到本地),优化随机森林分类算法的参数(绘制最优参数分布图),改变随机森林分类器的随机性,打印各个变量特征的贡献度(排序特征贡献度,并绘制柱状图)、统计每一类地类的面积(数字、图表两种形式)、分类数据后处理(滤波、平滑、连通性处理、重分类)等步骤的方法和代码。

本教程可以应用于多种分类场景,包括土地利用/覆盖分类、种植区提取(大蒜、小麦、玉米等)、局部气候区分类、植被分类、森林/草原分类、疾病/虫害分类、洪水预测等多种场景。

分类过程和分类结果如下图所示
————————————————————————————————————————————————
在这里插入图片描述


GEE(Google Earth Engine)是一个强大的云平台,用于对地球观测数据进行分析和可视化。在 GEE 中使用随机森林进行分类是一种常见且有效的方法。 要在 GEE 中进行随机森林分类,需要遵循以下步骤: 1. 数据准备:首先需要准备用于分类训练数据。这些数据应包含有标签的样本,每个样本都有一组特征和对应的分类标签。 2. 特征提取:使用 GEE 提供的图像处理函数从遥感影像中提取特征。例如,可以计算植被指数(如 NDVI)或纹理指标(如GLCM)等。 3. 数据准备与转换:将特征数据组合成一个特征向量,并将其转换为 GEE 支持的数据格式,如图像集或特征集。 4. 模型训练:使用已准备好的特征数据对随机森林模型进行训练。在 GEE 中,可以使用 ee.Classifier.randomForest() 函数创建一个随机森林分类器,并使用训练数据进行拟合。 5. 模型应用:使用训练好的模型对新影像或未知区域进行分类预测。可以使用 ee.Image.classify() 函数将模型应用于图像数据,并生成分类结果图像。 需要注意的是,GEE 中的随机森林分类方法并不是与传统的 Python sklearn 库中的随机森林完全一致。在 GEE 中,随机森林模型的训练和预测都是在云端进行的,并且具有一定的数据限制和算法实现差异。因此,在使用 GEE 进行随机森林分类时,需要参考 GEE 的相关文档和示例代码进行操作。
评论 115
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值